Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta thấy :
\(\frac{1}{1^2}=1;\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{100^2}< \frac{1}{99.100}\)
=>\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
mà \(1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)
=\(1-\frac{1}{1}+\frac{1}{1}-\frac{1}{2}+...+\frac{1}{99}-\frac{1}{100}\)
=\(1-\frac{1}{100}\)
=\(\frac{99}{100}\)<\(1\frac{3}{4}\)
=>M<\(1\frac{3}{4}\)
\(a,2^{x+2}-2^x=96\)
\(=>2^x.2^2-2^x=96\)
\(=>2^x.\left(4-1\right)=96\)
\(=>2^x.3=96\)
\(=>2^x=96:3=32\)
\(=>2^x=2^5\)
\(=>x=5\)
\(b,720:\left[41.\left(2x-5\right)\right]=2^3.125:5^2\)
\(=>720:\left[41.\left(2x-5\right)\right]=8.125:25\)
\(=>720:\left[41.\left(2x-5\right)\right]=8.5=40\)
\(=>41.\left(2x-5\right)=720:40=18\)
\(=>2x-5=18:41=\frac{18}{41}\)
\(=>2x=\frac{18}{41}+5=\frac{223}{41}\)
\(=>x=\frac{223}{41}:2=\frac{223}{62}\)
\(c,\left(-2x+7\right)^{19}=\left(-2x+7\right)^{19}.\left(x+1\frac{1}{4}\right)^2\)
\(=>\left(-2x+7\right)^{19}:\left(-2x+7\right)^{19}=\left(x+\frac{5}{4}\right)^2\)
\(=>1=\left(x+\frac{5}{4}\right)^2\)
\(=>1^2=\left(x+\frac{5}{4}\right)^2\)
\(=>1=x+\frac{5}{4}\)
\(=>x=1-\frac{5}{4}=-\frac{1}{4}\)
Chúc bạn Hk tốt!!!!
Và giữ đúng lời hứa trên@@!!!!!
a) \(\left|-4x+1\frac{1}{3}\right|=x+2\frac{1}{7}\)
TH1: \(-4x+1\frac{1}{3}=x+2\frac{1}{7}\)
\(-4x-x=2\frac{1}{7}-1\frac{1}{3}\)
\(-5x=\frac{17}{21}\)
=> ...
TH2: \(-4x+1\frac{1}{3}=-x-2\frac{1}{7}\)
...
rùi bn tự lm típ nha!
b) 22x-1+4x+2 = 264
=> 22x: 2 + (22)x+2=264
22x.1/2 + 22x+4=264
22x.1/2 + 22x.24 = 264
22x.(1/2 + 24) = 264
22x. 33/2 = 264
22x = 16
22x = 24
=> 2x = 4
x = 2
Bài 1:
C = 1/101 + 1/102 + 1/103 + ... + 1/200
Có:
C < 1/101 + 1/101 + 1/101 + ... + 1/101
C < 100 . 1/101
C < 100/101
Mà 100/101 < 1
=> C < 1 (1)
Có:
C > 1/200 + 1/200 + 1/200 + ... + 1/200
C > 100 . 1/200
C > 1/2 (2)
Từ (1) và (2)
=> 1/2<C<1
Ủng hộ nha mk làm tiếp
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};..........;\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{100^2}< 1-\frac{1}{100}< 1\)
=> Điều phải chứng minh
\(7^{n+4}-7^n=7^n.7^4-7^n=7^n.\left(7^4-1\right)=7^n.2400\) chia hết cho 30
\(=125+\left(81+4\right).2+\left(27-3\right):4\)
\(=125+85.2+\left(27-3\right):4\)
\(=125+85.2+24:4\)
\(=125+170+24:4\)
\(=125+170+6\)
\(=295+6\)
\(=301\)
Câu a )
S = 5 + 52 +..... + 52012
=> S \(⋮5\)
S = 5 + 52 +..... + 52012
S = ( 5 + 53 ) + ( 52 + 54 ) + ........ + ( 52010 + 52012 )
S = 5 ( 1 + 52 ) + 52 ( 1 + 52 ) + ......... + 52010 ( 1 + 52 )
S = 5 x 26 + 52 x 26 + ................ + 52010 x 26
S = 26 ( 5 + 52 + .... + 52010 )
=> S\(⋮26\)
=>\(S⋮13\)( do 26 = 13 x 2 )
Do ( 5 , 13 ) = 1
=> \(S⋮5x13\)
=> \(S⋮65\)
ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}< 1\)
=> đ p c m
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{n.n}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n.\left(n-1\right)}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n-1}\)
\(1-\frac{1}{n-1}< 1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\)