K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)

                                                                        \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

                                                                           \(=1-\frac{1}{n}< 1\)

=> đ p c m

1 tháng 8 2018

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{n.n}\)

\(< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n.\left(n-1\right)}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n-1}\)

                                                                \(1-\frac{1}{n-1}< 1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\)

8 tháng 5 2019

ta thấy :

\(\frac{1}{1^2}=1;\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{100^2}< \frac{1}{99.100}\)

=>\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)

=\(1-\frac{1}{1}+\frac{1}{1}-\frac{1}{2}+...+\frac{1}{99}-\frac{1}{100}\)

=\(1-\frac{1}{100}\)

=\(\frac{99}{100}\)<\(1\frac{3}{4}\)

=>M<\(1\frac{3}{4}\)

thank you so much.vui

6 tháng 7 2018

\(a,2^{x+2}-2^x=96\)

\(=>2^x.2^2-2^x=96\)

\(=>2^x.\left(4-1\right)=96\)

\(=>2^x.3=96\)

\(=>2^x=96:3=32\)

\(=>2^x=2^5\)

\(=>x=5\)

\(b,720:\left[41.\left(2x-5\right)\right]=2^3.125:5^2\)

\(=>720:\left[41.\left(2x-5\right)\right]=8.125:25\)

\(=>720:\left[41.\left(2x-5\right)\right]=8.5=40\)

\(=>41.\left(2x-5\right)=720:40=18\)

\(=>2x-5=18:41=\frac{18}{41}\)

\(=>2x=\frac{18}{41}+5=\frac{223}{41}\)

\(=>x=\frac{223}{41}:2=\frac{223}{62}\)

\(c,\left(-2x+7\right)^{19}=\left(-2x+7\right)^{19}.\left(x+1\frac{1}{4}\right)^2\)

\(=>\left(-2x+7\right)^{19}:\left(-2x+7\right)^{19}=\left(x+\frac{5}{4}\right)^2\)

\(=>1=\left(x+\frac{5}{4}\right)^2\)

\(=>1^2=\left(x+\frac{5}{4}\right)^2\)

\(=>1=x+\frac{5}{4}\)

\(=>x=1-\frac{5}{4}=-\frac{1}{4}\)

Chúc bạn Hk tốt!!!!

Và giữ đúng lời hứa trên@@!!!!!

11 tháng 7 2018

a) \(\left|-4x+1\frac{1}{3}\right|=x+2\frac{1}{7}\)

TH1: \(-4x+1\frac{1}{3}=x+2\frac{1}{7}\)

\(-4x-x=2\frac{1}{7}-1\frac{1}{3}\)

\(-5x=\frac{17}{21}\)

=> ...

TH2: \(-4x+1\frac{1}{3}=-x-2\frac{1}{7}\)

...

rùi bn tự lm típ nha!
b) 22x-1+4x+2 = 264

=> 22x: 2 + (22)x+2=264

22x.1/2 + 22x+4=264

22x.1/2 + 22x.24 = 264

22x.(1/2 + 24) = 264

22x. 33/2 = 264

22x = 16

22x = 24

=> 2x = 4

x = 2

12 tháng 8 2016

Bài 1:

C = 1/101 + 1/102 + 1/103 + ... + 1/200

Có:

C < 1/101 + 1/101 + 1/101 + ... + 1/101

C < 100 . 1/101

C < 100/101

Mà 100/101 < 1

=> C < 1 (1)

Có:

C > 1/200 + 1/200 + 1/200 + ... + 1/200

C > 100 . 1/200

C > 1/2 (2)

Từ (1) và (2)

=> 1/2<C<1

Ủng hộ nha mk làm tiếp

27 tháng 4 2017

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};..........;\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{100^2}< 1-\frac{1}{100}< 1\)

=> Điều phải chứng minh

28 tháng 4 2017

cảm ơn lê minh anh (arigatougozaimasu)

20 tháng 8 2020

\(7^{n+4}-7^n=7^n.7^4-7^n=7^n.\left(7^4-1\right)=7^n.2400\) chia hết cho 30

20 tháng 8 2020

\(=125+\left(81+4\right).2+\left(27-3\right):4\)

\(=125+85.2+\left(27-3\right):4\)

\(=125+85.2+24:4\)

\(=125+170+24:4\)

\(=125+170+6\)

\(=295+6\)

\(=301\)

23 tháng 3 2017

câu b lên mạng có thể tìm thấy câu tương tự

Câu a ) 

S = 5 + 52 +..... + 52012

=> S \(⋮5\)

S = 5 + 52 +..... + 52012

S = ( 5 + 53 ) + ( 52 + 54 ) + ........ + ( 52010 + 52012 )

S = 5 ( 1 + 52 ) + 52 ( 1 + 52 ) + ......... + 52010 ( 1 + 52 )

S = 5 x 26 + 52 x 26 + ................ + 52010 x 26

S = 26 ( 5 + 52 + .... + 52010 )

=> S\(⋮26\)

=>\(S⋮13\)( do 26 = 13 x 2 )

Do ( 5 , 13 ) = 1

=> \(S⋮5x13\)

=> \(S⋮65\)