K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

n phải lẻ và n\(\in\)N nha bn!

phân tích 234 ra thừa số nguyên tố ta đựợc:

234=2.32.13.ta cần chứng minh:

\(A⋮2;A⋮9;A⋮13\) vì ƯCLN(2;9;13)=234

ta lại có:\(\left(118^n-16^n\right)\)\(⋮\)(118-16)=102\(⋮\)2

\(101^n+1⋮\left(101+1\right)=102⋮2\)

\(\Rightarrow\)A=\(\left(118^n-16^n\right)\)-(\(101^n+1\))\(⋮2\) (1)

tương tự: \(118^n-1⋮\left(118-1\right)=117⋮9;13\)

\(101^n+16^n⋮\left(101+16\right)=117⋮9;13\)

\(\Rightarrow\)A=\(\left(118^n-1\right)-\left(101^n+16^n\right)⋮9;13\)(2)

Từ (1) và (2) \(\Rightarrow\)A chia hết cho 2;9;13

Vậy A chia hết cho 234

Chúc các bn học tốtbanh

9 tháng 7 2017

n thuộ n sao đó đmá cưới

12 tháng 9 2017

Nếu n chẵn thì 118n - 101n - 16n - 1 \(⋮̸\)702 ( vì chẵn trừ chẵn trừ chẵn bằng chẵn, chẵn trừ lẻ bằng lẻ, không chia hết cho 702.

=> 118n - 101n - 16n - 1 \(⋮̸\)702 thì n lẻ

22 tháng 4 2021

câu a thì quy đồng bỏ mẫu là ra nha

 

29 tháng 3 2018

Ta có : 

\(m>n\)

\(\Leftrightarrow\)\(15m>15n\)

\(\Leftrightarrow\)\(-15m< -15n\)

\(\Leftrightarrow\)\(-15m+101< -15n+101\)

\(\Leftrightarrow\)\(101-15m< 101-15n\) ( đpcm ) 

Vậy nếu \(m>n\) thì \(101-15m< 101-15n\)

Chúc bạn học tốt ~ 

22 tháng 4 2021

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

17 tháng 8 2021

\(323=17.19\)

+) \(20^n+16^n-3^n-1=\left(20^n-1\right)+\left(16^n-3^n\right)\)

\(20^n-1=20^n-1^n⋮\left(20-1\right)=19\)

\(16^n-3^n⋮\left(16+3\right)=19\) (vì n chẵn)

\(\Rightarrow20^n+16^n-3^n-1⋮19\) 

+) \(20^n+16^n-3^n-1=\left(20^n-3^n\right)+\left(16^n-1\right)\)

\(20^n-3^n⋮\left(20-3\right)=17\)

\(16^n-1=16^n-1^n⋮\left(16+1\right)=17\) (vì n chẵn)

\(\Rightarrow20^n+16^n-3^n-1⋮17\)

Mà \(\left(17,19\right)=1\)

\(\Rightarrow20^n+16^n-3^n-1⋮\left(17.19\right)=323\)

17 tháng 8 2021

thank you yeu

Bài 2:

Khi n là số chẵn thì n=2k

\(A=n^3-4n=n\left(n-2\right)\left(n+2\right)\)

\(=2k\left(2k-2\right)\left(2k+2\right)\)

\(=8k\left(k-1\right)\left(k+1\right)\)

Vì k;k-1 là hai số liên tiếp nên k(k-1) chia hết cho 2

=>A chia hết cho 16

\(B=n^3+4n\)

\(=n\left(n^2+4\right)\)

\(=2k\cdot\left(4k^2+4\right)\)

\(=8k\left(k^2+1\right)\)

Vì k;k^2+1 bao giờ cũng khác nhau về tính chẵn/lẻ nên k(k^2+1) chia hết cho 2

=>B chia hết cho 16