K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 1 2023

Lời giải:
$\frac{1}{1+2+3+...+n}=\frac{1}{\frac{n(n+1)}{2}}=\frac{2}{n(n+1)}$

$=2.\frac{(n+1)-n}{n(n+1)}=2[\frac{n+1}{n(n+1)}-\frac{n}{n(n+1)}]$

$=2(\frac{1}{n}-\frac{1}{n+1})$ (đpcm)

1 tháng 12 2018

\(N=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}\)

=>   \(3N=1+\frac{1}{3}+...+\frac{1}{3^{2017}}\)

=>  \(3N-N=\left(1+\frac{1}{3}+...+\frac{1}{3^{2017}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}\right)\)

<=>   \(2N=1-\frac{1}{3^{2018}}< 1\)

<=>  \(N< \frac{1}{2}\)

=> dpcm

21 tháng 12 2018

bạn giỏi quá

30 tháng 10 2024

ko bít làm

 

12 tháng 4 2020

1. \(A=\frac{1}{2}-\frac{2}{5}+\frac{1}{3}+\frac{5}{7}-\frac{-1}{6}+\frac{-4}{35}+\frac{1}{41}\)

\(=\frac{1}{2}-\frac{2}{5}+\frac{1}{3}+\frac{5}{7}+\frac{1}{6}-\frac{4}{35}+\frac{1}{41}\)

\(=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)-\left(\frac{2}{5}-\frac{5}{7}+\frac{4}{35}\right)+\frac{1}{41}\)

\(=\left(\frac{5}{6}+\frac{1}{6}\right)-\left(\frac{-11}{35}+\frac{4}{35}\right)+\frac{1}{41}\)\(=1-\frac{-7}{35}+\frac{1}{41}=1+\frac{1}{5}+\frac{1}{41}=\frac{251}{205}\)

2. a) \(1+4+4^2+4^3+......+4^{99}=\left(1+4\right)+\left(4^2+4^3\right)+.......+\left(4^{98}+4^{99}\right)\)

\(=\left(1+4\right)+4^2\left(1+4\right)+.........+4^{98}\left(1+4\right)\)

\(=5+4^2.5+........+4^{98}.5=5\left(1+4^2+.....+4^{98}\right)⋮5\)( đpcm )

b) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=3^n.10-2^n.5=3^n.10-2^{n-1+1}.5=3^n.10-2^{n-1}.2.5\)

\(=3^n.10-2^{n-1}.10=10\left(3^n-2^{n-1}\right)⋮10\)( đpcm )