Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)5\(^5\)-5\(^4\)+5\(^3\)=5\(^3\)x5\(^2\)-5\(^3\)x5\(^1\)+5\(^3\)x1=\(5^3\)x(\(5^2-5^1+1\))=\(5^3\)x121
a) Vì 1494 và 1495 là số tự nhiên liên tiếp nên chia hết cho 2 , nhân với 1496 là số chẵn nên 1494 x 1495 x 1496 chia hết cho 2 => 1494 x 1495 x 1496 chia hết cho 2 x 90 => chúng chia hết cho 180.
b) Vì 1494 x 1495 x 1496 là 3 số tự nhiên liên tiếp nên chắc chắn có 1 số chia hết cho 3 => 1494 x 1495 x 1496 chia hết cho 3 => 1494 x 1495 x 1496 chia hết cho 3 x 165 => 1494 x 1495 x 1496 chia hết cho 495
Mấy câu dưới ko bik
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv//////////////////////?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
đề này mới đúng:
109 + 108 + 107
= 107 . 102 + 108 . 10 + 107 . 1
= 107( 102 + 10 + 1 )
= 107 . 111
Có: 222 = 2 . 111
=> 107 . 111 chia hết cho 2 . 111
Chứng minh rằng:
\(2^{10}+2^{11}+2^{12}\)
\(=2^{10}\left(1+2+2^2\right)\)
\(=2^{10}.7\) \(⋮\) 7
Vậy \(2^{10}+2^{11}+2^{12}\) chia hết cho 7
Chứng minh rằng:
\(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\)
\(=3^n.3^3+3^n.3^2+2^n.2^3+2^n.2^2\)
\(=3^n\left(3^3+3^2\right)+2^n\left(2^3+2^2\right)\)
\(=36.3^n+12.3^n\)
\(=6\left(6.3^n+2.3^n\right)\) \(⋮\) 6 với mọi n \(\in\) N
Vậy \(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\) chia hết cho 6 với mọi n \(\in\) N
Vì A chia hết cho 18
=> A chia hết cho 2 và 9
\(A=10^{33}+8=10...000+8\) ( 1033 có 33 chữ số 0 )
\(=>\)Tổng của A \(=1000...0+8=1+0+8=9\)
=> A chia hết cho 9 ( 1 )
Vì A có tận cùng là 8 => A chia hết cho 2 ( 2 )
Từ ( 1 ) và ( 2 ) suy ra A chia hết cho 18 ( đpcm )
Phần sau bạn lm tương tự nhé
Vì A chia hết cho 18
=> A chia hết cho 2 và 9
A=1033+8=10...000+8 ( 1033 có 33 chữ số 0 )
=>Tổng của A =1000...0+8=1+0+8=9
=> A chia hết cho 9 ( 1 )
Vì A có tận cùng là 8 => A chia hết cho 2 ( 2 )
Từ ( 1 ) và ( 2 ) suy ra A chia hết cho 18 ( đpcm )
Phần sau bạn làm tương tự nhé
Ta có :
10n + 8 = 100...0 (n chữ số 0) + 8 = 100...08 (n-1 chữ số 0)
Tổng các chữ số của 10n + 8 là :
1 + 0 + 0 + ... + 0 + 8 = 1 +0 + 8 = 9 chia hết cho 9
Vậy 10n + 8 chia hết cho 9
\(10^n+8=10...000\left(\text{n số 0}\right)+8=10...008\left(\text{n-1 số 0}\right)\)
có: 1+0+...+0+0+8 (n-1 số 0) = 9 chia hết cho 9
=> 10n+8 chia hết cho 9
=> đpcm.