Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : B=1+4+4^2+4^3+...+4^2012
=>4B=4(1+4+4^2+4^3+...+4^2012)=4+4^2+4^3+4^4+...+4^2013
=>4B-B=(4+4^2+4^3+4^4+...+4^2013)-(1+4+4^2+4^3+...+4^2012)
=>3B=4^2013-1
Ta có 4^2013=(4^3)^671
Mà 4^3=64 chia cho 21 dư 1
=>(4^3)^671 chia cho 21 dư 1
=>(4^3)^671 -1 chia hết cho 21
Hay 4^2013-1 chia hết cho 21
=>3B chia hết cho 21
Mặt khác lại có:4^2013-1 > 63
=> 3B>3 nhân với 21
B>21(1)
Mà 3B chia hết cho 21(2)
Từ (1) và (2)=>B chia hết cho 21
Vậy ........................................
k cho mình nha
a)
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)
A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)
A=21+43.21+...+447.21A=21+43.21+...+447.21
A=21(1+43+...+447)A=21(1+43+...+447)
⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả
4a=4+42+43+......+42013
4a-a=(4+42+43+......+42013)-(1+4+42+......+42012)
3a=42013-1
a=42013-1
3
\(M=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(M=21+4^3.\left(1+4+4^2\right)+...+4^{2010}.\left(1+4+4^2\right)\)
\(M=21+4^3.21+...+4^{2010}.21\)
\(M=21.\left(1+4^3+....+4^{2010}\right)⋮21\)
a) (1+4+42) + (43+45+46) +.....+ (42010+42011+42012)
= 21 + 43.(1+4+42) +.....+ 42010.(1+ 4 + 42)
= 21 + 43. 21 +....+ 42010. 21
= 21. (1+ 43 +......+ 42010 )
=> tổng chia hết cho 21
a, Ta co : M= ( 1 +4 + 42 ) + ( 43 + 44 + 45 ) +.......................+ ( 42010 + 42011 +42012 )
M = 1. (1+4+16 ) +43. (1+4+16 ) +.........................+ 42010. ( 1+4 +16
M = 1, 21 + 43. 21 +..............................................+ 42010 .21
M= 21.(1+43+.................................... + 42010 ) CHIA HẾT 21
TƯƠNG TƯ
1) \(1+4+4^2+4^3+...+4^{2012}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(=21+21\cdot4^3+...+21\cdot4^{2010}\)
\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21
2) \(1+7+7^2+7^3+...+7^{101}\)
\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)
\(=8+8\cdot7^2+...8\cdot7^{100}\)
\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8
3) CM chia hết cho 5:
\(2+2^2+2^3+2^4+...+2^{100}\)
\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)
\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)
\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5
CM chia hết cho 31:
\(2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\cdot31+...+2^{96}\cdot31\)
\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31
c)D=4+42+43+44+...+42012
D=(4+42)+(43+44)+...+(42011+42012)
D=4.5+43.5+45.5+...+42011.5
D=5.(4+43+42011)
=>D chia hết cho 5
=>ĐPCM
Lời giải:
Đặt $A=1+4+4^2+4^3+....+4^{2012}$
$=(1+4+4^2)+(4^3+4^4+4^5)+.....+(4^{2010}+4^{2011}+4^{2012})$
$=(1+4+4^2)+4^3(1+4+4^2)+....+4^{2010}(1+4+4^2)$
$=(1+4+4^2)(1+4^3+...+4^{2010})$
$=21(1+4^3+....+4^{2010})$
$\Rightarrow A\vdots 21$
Ta có đpcm.
1+4+42+43+.........+42012
=(1+4+42)+43.(1+4+42)+............+42010.(1+4+42)
=21+43.21+............+42010.21
=21.(1+43+.......+42010)
Vì 21 chia hết cho 21
=> 21.(1+43+.....+42010) chia hết cho 21
Vậy 1+4+42+43+......+42012 chia hết cho 21
Chúc bn hok tốt nhé
#han sara#
\(1+4+4^2+4^3+4^4+.....+4^{2012}.\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+\left(4^6+4^7+4^8\right)+.....+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(=21+4^3\cdot\left(1+4+4^2\right)+4^6\cdot\left(1+4+4^2\right)+.....+4^{2010}\cdot\left(1+4+4^2\right)\)
\(=21+4^3\cdot21+4^6\cdot21+.....+4^{2010}\cdot21\)
\(=21\left(1+4^3+4^6+...+4^{2010}\right)\)
Có \(21\left(1+4^3+4^6+...+4^{2010}\right)⋮4\)
\(\Rightarrow1+4+4^2+4^3+4^4+.....+4^{2012}⋮4\)\(\left(đpcm\right)\)
1+4+42+43+....+42012
= (1+4+42)+(43+44+45)+.......+(42010+42011+42012)
=1(1+4+42)+43(1+4+42)+.......+42010(1+4+42)
=1 . 21 + 43 . 21 + ..... + 42010 . 21
= 21 . ( 1+43+.....+42010)
Vì 21 chia hết cho 21 => 21.(1+43+.....+42010)
CHÚC BN HOK GIỎI!
=