Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mik làm được 1 bài thôi . Tiếc quá mình sắp phải đi học rồi.
BÀi 12:
S=1 + 2 + 22 + `23 +..........+ 22017
2S=2 + 22 + `23 + 24 +..........+22017 + 22018
Trừ đi hai vế ta được:
S=1 + 22018
a) 52 . x = 62 + 82
\(5^2\cdot x=36+64\)
\(5^2\cdot x=100\)
\(x=100\div5^2\)
\(x=100\div25\)
\(x=4\)
b) ( 22 + 42 ) . x + 24 . 5 . x = 102
\(\left(4+16\right)\cdot x+16\cdot5\cdot x=100\)
\(x\cdot\left(20+80\right)=100\)
\(x\cdot100=100\)
\(x=100\div100\)
\(x=1\)
c ) 24 . x = 26
\(x=2^6\div2^4\)
\(x=2^{6-4}\)
\(x=2^2\)
\(x=4\)
d) 33 . x + 23 . x = 102
\(x\cdot\left(23+27\right)=100\)
\(x\cdot50=100\)
\(x=100\div50\)
\(x=2\)
e) 78 . x = 710
\(x=7^{10}\div7^8\)
\(x=7^{10-8}\)
\(x=7^2\)
\(x=49\)
Câu này tính thôi ko cần cách làm phức tạp;
\(P=2+2^2+2^3+..........+2^{10}\Rightarrow2P=2^2+2^3+2^4+.......+2^{11}\)
\(\Rightarrow2P-P=P=2^{11}-2=2048-2=2046⋮3\left(đpcm\right)\)
Chú ý: câu này là số nhỏ nên lm được bằng cách này còn số to hơn lm cách khác
P = 2+22+23+24+25 +26+27+28+29+210
P = (2+22)+(23+24)+(25 +26)+(27+28)+(29+210)
P = 2(1+2)+23(1+2)+25(1+2)+27(1+2)+29(1+2)
P = 2 .3 + 23 . 3 + 25 . 3 + 27 . 3 + 29 . 3
P = 3( 23 + 25 + 27 + 29 ) chia hết cho 3
1)\(79-5\left(11-x\right)=34\)
\(\Rightarrow79-55+5x=34\)
\(\Rightarrow24+5x=34\)
\(\Rightarrow5x=-10\)
\(\Rightarrow x=-2\)
Vậy \(x=-2\)
2)\(32+2\left(7-x\right)=40\)
\(\Rightarrow32+14-2x=40\)
\(\Rightarrow46-2x=40\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=3\)
Vậy \(x=3\)
3)\(\left(166-2x\right).8^9=2.8^{11}\)
\(\Rightarrow\left(83-x\right).2.8^9=2.8^{11}\)
\(\Rightarrow83-x=8^3\)
\(\Rightarrow83-x=512\)
\(\Rightarrow x=-429\)
Vậy \(x=-429\)
4)\(5^2.x-2^3.x=51\)
\(\Rightarrow x\left(5^2-2^3\right)=51\)
\(\Rightarrow x\left(25-8\right)=51\)
\(\Rightarrow17x=51\)
\(\Rightarrow x=3\)
Vậy \(x=3\)
5)\(3^x+4.3^x=5.3^7\)
\(\Rightarrow3^x\left(1+4\right)=5.3^7\)
\(\Rightarrow5.3^x=5.3^7\)
\(\Rightarrow3^x=3^7\)
\(\Rightarrow x=7\)
Vậy \(x=7\)
6)\(7.2^x-2^x=6.32\)
\(\Rightarrow2^x\left(7-1\right)=6.2^5\)
\(\Rightarrow6.2^x=6.2^5\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
Vậy \(x=5\)
7)\(15^{3-x}=225\)
\(\Rightarrow15^{3-x}=15^2\)
\(\Rightarrow3-x=2\)
\(\Rightarrow x=1\)
Vậy \(x=1\)
8)\(4.5^x-3=97\)
\(\Rightarrow4.5^x=100\)
\(\Rightarrow5^x=25\)
\(\Rightarrow5^x=5^2\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
9)\(171-3.2^x=123\)
\(\Rightarrow3.2^x=48\)
\(\Rightarrow2^x=16\)
\(\Rightarrow2^x=2^4\)
\(\Rightarrow x=4\)
Vậy \(x=4\)
10)\(180-4.x^5=32\)
\(\Rightarrow4.x^5=148\)
\(\Rightarrow x^5=37\)//Đề có lỗi không ???
b) 3^2 . [(5^2 - 3 ) : 11 ] - 2^4 + 2.10^3
= 9 . [(25 - 3 ) : 11 ] - 16 + 2.1000
= 9 . [22 : 11 ] - 16 + 2000
= 9 . 2 - 16 + 2000
= 18 - 16 + 2000
= 2 + 2000
= 2002
(72005 + 72004) : 72004
= 72005 : 72004 + 72004 : 72004
= 72005 - 2004 + 1
= 71 + 1
= 7 + 1
= 8
a) ( 3^5 . 3^7 ) : 3^10 + 5.2^4 - 7^3 : 7
= 3^10 : 3^10 + 80 - 7^2
= 1 + 80 - 49
= 32
Bài 1:
a) 23=2.2.2=823=2.2.2=8;
24=23.2=8.2=1624=23.2=8.2=16;
25=24.2=16.2=3225=24.2=16.2=32;
26=25.2=32.2=6426=25.2=32.2=64;
27=26.2=64.2=12827=26.2=64.2=128;
28=27.2=128.2=25628=27.2=128.2=256;
29=28.2=256.2=51229=28.2=256.2=512;
210=29.2=512.2=1024210=29.2=512.2=1024
b) 32=3.3=932=3.3=9;
33=32.3=9.3=2733=32.3=9.3=27;
34=33.3=27.3=8134=33.3=27.3=81;
35=34.3=81.3=24335=34.3=81.3=243.
c) 42=4.4=1642=4.4=16;
43=42.4=16.4=6443=42.4=16.4=64;
44=43.4=64.4=25644=43.4=64.4=256.
d) 52=5.5=2552=5.5=25;
53=52.5=25.5=12553=52.5=25.5=125;
54=53.5=125.5=62554=53.5=125.5=625.
e) 62=6.6=3662=6.6=36;
63=62.6=36.6=21663=62.6=36.6=216;
64=63.6=216.6=129664=63.6=216.6=1296.
c ) S = 1.2 + 2.3 + 3.4 + .... + 99.100
=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + .... + 99.100.3
=> 3S = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + .... + 99.100.( 101 - 98 )
=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 99.100.101 - 98.99.100
=> 3S = ( 1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + .... + ( 98.99.100 - 98.99.100 ) + 99.100.101
=> 3S = 99.100.101 => S = \(\frac{99.100.101}{3}\)
d ) Ta có \(\frac{1}{2^2}<\frac{1}{2.1}=\frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
..........
\(\frac{1}{100^2}<\frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{100}=\frac{99}{100}<1\)