Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu a:
|\(\sqrt2\) - \(x\)| = \(\sqrt2\)
\(\left[\begin{array}{l}\sqrt2-x=\sqrt2\\ \sqrt2-x=-\sqrt2\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x=2\sqrt2\end{array}\right.\)
Vậy \(x\in\) {0; \(2\sqrt2\)}
Câu b:
|\(x-1\)| = \(\sqrt3\) + 2
\(\left[\begin{array}{l}x-1=\sqrt3+2\\ x-1=-\sqrt{3-2}\end{array}\right.\)
\(\left[\begin{array}{l}x=\sqrt3+2+1\\ x=-\sqrt3-2+1\end{array}\right.\)
\(\left[\begin{array}{l}x=\sqrt3+\left(2+1\right)\\ x=-\sqrt3-\left(2-1\right)\end{array}\right.\)
\(\left[\begin{array}{l}x=\sqrt3+3\\ x=-\sqrt3-1\end{array}\right.\)
Vậy \(x\in\) {- \(\sqrt3\) - 1; \(\sqrt3\) + 3}

\(A=\dfrac{1}{a+1}+\dfrac{1}{b+1}=\dfrac{a+b+2}{\left(a+1\right)\left(b+1\right)}\)
\(=\dfrac{\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{2-\sqrt{3}}+2}{\left(\dfrac{1}{2+\sqrt{3}}+1\right).\left(\dfrac{1}{2-\sqrt{3}}+1\right)}\)
\(=\dfrac{\dfrac{2-\sqrt{3}+2+\sqrt{3}+2\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}{\dfrac{3+\sqrt{3}}{2+\sqrt{3}}.\dfrac{3-\sqrt{3}}{2-\sqrt{3}}}=\dfrac{6}{6}=1\)
P/s: ( Nếu sai chỗ nào ns tui vs nha chứ nhiều số quá rối luôn )

Bài 1:
a: \(\Leftrightarrow2-3\sqrt{x}+5\sqrt{x}=8\)
=>2 căn x=6
=>căn x=3
=>x=9
b: \(\Leftrightarrow\dfrac{1}{\sqrt{x}}\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{6}\right)=\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{x}}=\dfrac{2}{3}:\dfrac{2}{3}=1\)
=>x=1