Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
b) Ta có :
\(\left[\left(a+b\right)+\left(c+d\right)\right]^2=\left(a+b\right)^2+2\left(a+b\right)\left(c+d\right)+\left(c+d\right)^2\)
Áp dụng hằng đẳng thức tương tự với ba đa thức còn lại, ta được :
\(2\left(a+b\right)^2+2\left(a-b\right)^2+2\left(c+d\right)^2+2\left(c-d\right)^2\)
\(=2\left(a^2+2ab+b^2+a^2-2ab+b^2+c^2+2cd+d^2+c^2-2cd+d^2\right)\)
\(=4\left(a^2+b^2+c^2+d^2\right)\)
\(\Rightarrowđpcm\)
a2 + b2 + (a + b)2 = c2 + d2 + (c +d)2 => 2.(a2 + b2) + 2ab = 2.(c2 + d2) + 2cd
=> a2 + b2 + ab = c2 + d2 + cd (1)
+) a4 + b4 + (a + b)4 = (a2 + b2)2 - 2a2.b2 + (a + b)4 = [(a2 + b2)2 - a2.b2] + [(a + b)4 - a2.b2]
= (a2 + b2 - ab). (a2 + b2 + ab) + [(a + b)2 - ab].[(a+ b)2 + ab]
= (a2 + b2 - ab). (a2 + b2 + ab) + (a2 + b2 + ab). (a2 + b2 + 3ab) = (a2 + b2 + ab). [(a2 + b2 - ab) + (a2 + b2 + 3ab)]
= 2.(a2 + b2 + ab).(a2 + b2 + ab) = 2.(a2 + b2 + ab)2 (2)
Tương tự: c4 + d4 + (c+d)4 = 2. (c2 + d2 + cd)2 (3)
Từ (1)(2)(3) => đpcm
Câu 4 :
Ta có : a+b+c=0
=> a+b=-c
Lại có : a3+b3=(a+b)3-3ab(a+b)
=> a3+b3+c3=(a+b)3-3ab(a+b)+c3
=-c3-3ab. (-c)+c3
=3abc
Vậy a3+b3+c3=3abc với a+b+c=0
Cách khác cho bài 1, 2 nha! Akai Haruma em tháy nó nhanh hơn!
1/Đặt \(a=x;b-c=y\)
biểu thức trở thành \(\left(x+y\right)^2+\left(x-y\right)^2-2y^2=2\left(x^2+y^2\right)-2y^2=2x^2=2a^2\)
2/ Đặt \(a-b-c=x;b-c-a=y;c-a-b=z\Rightarrow\left(a+b+c\right)^2=\left(-\left(a+b+c\right)\right)^2=\left(x+y+z\right)^2\)
Khi đó \(B=\left(x+y+z\right)^2+x^2+y^2+z^2\)
\(=2\left(x^2+y^2+z^2+xy+yz+zx\right)\)
\(=\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2\)
\(=4\left(a^2+b^2+c^2\right)\)(thay x, y, z bởi các biến đã đặt rồi rút gọn thôi:))
Lời giải:
1.
\((a+b-c)^2+(a-b+c)^2-2(b-c)^2\)
\(=a^2+b^2+c^2+2ab-2ac-2bc+a^2+b^2+c^2-2ab+2ac-2bc-2(b^2-2bc+c^2)\)
\(=2(a^2+b^2+c^2)-4bc-2(b^2+c^2)+4bc\)
\(=2a^2\)
2.
\((a+b+c)^2+(a-b-c)^2+(b-c-a)^2+(c-a-b)^2\)
\(=(a+b+c)^2+a^2+(b+c)^2-2a(b+c)+b^2+(a+c)^2-2b(a+c)+c^2+(a+b)^2-2c(a+b)\)
\(=(a+b+c)^2+a^2+b^2+c^2+[(a+b)^2+(b+c)^2+(c+a)^2]-4(ab+bc+ac)\)
\(=a^2+b^2+c^2+2(ab+bc+ac)+a^2+b^2+c^2+(2a^2+2b^2+2c^2+2ab+2bc+2ac)-4(ab+bc+ac)\)
\(=4(a^2+b^2+c^2)\)
3.
\((a+b+c+d)^2+(a+b-c-d)^2+(a+c-b-d)^2+(a+d-b-c)^2\)
\(=(a+b)^2+(c+d)^2+2(a+b)(c+d)+(a+b)^2+(c+d)^2-2(a+b)(c+d)+(a-b)^2+(c-d)^2+2(a-b)(c-d)+(a-b)^2+(d-c)^2+2(a-b)(d-c)\)
\(=2(a+b)^2+2(c+d)^2+2(a-b)^2+2(c-d)^2\)
\(=2[(a+b)^2+(a-b)^2+(c+d)^2+(c-d)^2]\)
\(=2(a^2+2ab+b^2+a^2-2ab+b^2+c^2+2cd+d^2+c^2-2cd+d^2)\)
\(=2(2a^2+2b^2+2c^2+2d^2)=4(a^2+b^2+c^2+d^2)\)
a, Ta có : BĐT \(a^2+b^2\ge2ab\) = BĐT cauchuy .
-> Áp dụng BĐT cauchuy ta được :
\(\left\{{}\begin{matrix}a^4+b^4\ge2\sqrt{a^4b^4}=2a^2b^2\\c^4+d^4\ge2\sqrt{c^4d^4}=2c^2d^2\end{matrix}\right.\)
- Cộng 2 bpt lại ta được :
\(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2=2\left(\left(ab\right)^2+\left(cd\right)^2\right)\)
- Mà \(\left(ab\right)^2+\left(cd\right)^2\ge2abcd\)
=> \(a^4+b^4+c^4+d^4\ge2.2abcd=4abcd\)
b, CMTT câu 1 .
- Áp dụng BĐT cauchuy ta được :
\(\left\{{}\begin{matrix}a^2+1\ge2a\\b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)
- Nhân 3 bpt trên lại ta được :
\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2.2.2abc=8abc\)
a: \(=a^2+2a\left(b-c\right)+\left(b-c\right)^2+a^2-2a\left(b-c\right)+\left(b-c\right)^2-2\left(b-c\right)^2\)
\(=2a^2+2\left(b-c\right)^2-2\left(b-c\right)^2=2a^2\)
b: \(=a^2+2a\left(b+c\right)+\left(b+c\right)^2+a^2-2a\left(b+c\right)+\left(b+c\right)^2+\left(b-c-a\right)^2+\left(c-a-b\right)^2\)
\(=2a^2+2\left(b+c\right)^2+\left(a-b+c\right)^2+\left(a+b-c\right)^2\)
\(=2a^2+2\left(b+c\right)^2+a^2-2a\left(b-c\right)+\left(b-c\right)^2+a^2+2a\left(b-c\right)+\left(b-c\right)^2\)
\(=2a^2+2\left(b+c\right)^2+2a^2+2\left(b-c\right)^2\)
\(=4a^2+2\left(b^2+2bc+c^2+b^2-2bc+c^2\right)\)
\(=4a^2+4b^2+4c^2\)
Ta có a^2 + b^2 + (a - b)^2= c^2 + d^2 + (c - d)^2.
=> a^4+b^4+(a-b)^4+2[a^2b^2+a^2(a-b)^2+b^2(a-b)2]=
=c^4+d^4+(c-d)^4+2[c^2d^2+c^2(c-d)^2+d^2(c-d)^2
<=>a^4+b^4+(a-b)^4+2[a^2b^2+(a^2+b^2)(a-b)^2]
=c^4+d^4+(c-d)^4+2[c^2d^2+(c^2+d^2)(c-d)^2
Lại có a^2 + b^2 + (a - b)^2 = c^2 + d^2 + (c - d)^2.
=> 2(a^2+b^2-ab) =2(c^2+d^2-cd)
=>a^2+b^2-ab =c^2+d^2-cd
=>(a^2+b^2)2+a^2b^2-2ab(a^2+b^2)=(c^2+d^2)^2+c^2d^2-2cd(c^2+d^2).
=>a^2b^2+(a^2+b^2)(a^2+b^2-2ab)=c^2d^2+(c^2+d^2)(c^2+d^2-2cd)
=>a^2b^2+(a^2+b^2)(a-b)^2=c^2d^2+(c^2+d^2)(c-d)^2
Từ đó bạn sẽ có đpcm