K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

a) \(\left(a+b\right)^3+\left(a-b\right)^3=2a\left(a^2+3b^2\right)\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3-2a^3-6ab^2=0\)

\(\Leftrightarrow0=0\) ( đpcm) .

b) \(\left(a+b\right)^3-\left(a-b\right)^3=2b\left(b^2+3a^2\right)\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3-2a^3-6ab^2=0\)

\(\Leftrightarrow0=0\) ( luôn đúng )

Vậy đẳng thức được chứng minh.

11 tháng 8 2017

Làm cách khác với "thị nở" :v.

a) \(\left(a+b\right)^3+\left(a-b\right)^3=2a\left(a^2+3b^2\right)\)

\(=\left[\left(a+b\right)+\left(a-b\right)\right]\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]=2a\left(a^2+3b^2\right)\)

\(=\left(a+b+a-b\right)\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)=2a\left(a^2+3b^2\right)\)

\(=2a\left(a^2+3b^2\right)=2a\left(a^2+3b^2\right)\)

b) \(\left(a+b\right)^3-\left(a-b\right)^3=2b\left(b^2+3a^2\right)\)

\(=\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]=2b\left(b^2+3a^2\right)\)

\(=\left(a+b-a+b\right)\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)=2b\left(b^1+3a^2\right)\)\(=2b^2\left(b^2+3a^2\right)=2b^2\left(b^2+3a^2\right)\)

28 tháng 6 2017

a.\(\left(a+b\right)^3+\left(a-b\right)^3=2a\left(a^2+3b^2\right)\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3-2a^3-6ab^2=o\)

\(\Leftrightarrow0=0\)(đpcm)

b.\(\left(a+b\right)^3-\left(a-b\right)^3=2b\left(b^2+3a^2\right)\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3-2b^3-6a^2b=o\)

\(\Leftrightarrow0=0\)luôn đúng

Vậy đẳng thức được chứng minh

16 tháng 9 2016

a^3/b +a^3/b +b^2 >=3.a^2 
=>2a^3/b +b^2>=3a^2 
tuong tu 
2b^3/c +c^2 >=3.b^2 
2c^3/a +a^2 >=3.c^2 
cog lai ta dc 
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2) 
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2 
mat khc 
a^2+b^2+c^2>=ab+bc+ca 
nen 
a^3/b+b^3/c+c^3/a >=ab+bc+ca 
dau = xay ra khi a=b=c

k nha

10 tháng 4 2018

a^3/b +a^3/b +b^2 >=3.a^2 
=>2a^3/b +b^2>=3a^2 
tuong tu 
2b^3/c +c^2 >=3.b^2 
2c^3/a +a^2 >=3.c^2 
cog lai ta dc 
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2) 
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2 
mat khc 
a^2+b^2+c^2>=ab+bc+ca 
nen 
a^3/b+b^3/c+c^3/a >=ab+bc+ca 
dau = xay ra khi a=b=c

27 tháng 4 2023

a) a > b

⇒ 2a > 2b (nhân hai vế với 2 > 0)

⇒ 2a - 3 > 2b - 3 (cộng hai vế với -3)

b) a < b

⇒ -3a > -3b (nhân hai vế với -3 < 0)

⇒ -3a + 2 > -3b + 2 (1) (cộng hai vế với 2)

5 > 2

⇒ -3a + 5 > -3a + 2 (2) (cộng hai vế với -3a)

Từ (1) và (2) ⇒ -3a + 5 > -3b + 2

19 tháng 7 2021

Trả lời:

a, ( a + b )3 + ( a - b )3 

= a3 + 3a2b + 3ab2 + b3 + a3 - 3a2b + 3ab2 - b3

= 2a3 + 6ab2

= 2a ( a2 + 3b2 )  (đpcm)

b, Sửa đề: ( a + b )3 - ( a - b )3

= a3 + 3a2b + 3ab2 + b3 - ( a3 - 3a2b + 3ab2 - b3 )

= a3 + 3a2b + 3ab2 + b3 - a3 + 3a2b - 3ab2 + b3

= 6a2b + 2b3

= 2b ( b2 + 2a2 ) 

19 tháng 7 2021

Trả lời:

( câu b vừa nãy tớ làm nhầm )

b, ( a + b )3 - ( a - b )3 

= a3 + 3a2b + 3ab2 + b3 - ( a3 - 3a2b + 3ab2 - b3 )

= a3 + 3a2b + 3ab2 + b3 - a3 + 3a2b - 3ab2 + b3

= 6a2b + 2b3

= 2b ( b2 + 3a2 )  (đpcm)

2 tháng 6 2019

22 tháng 8 2020

Bài 1:

a) \(\left(x+y\right)^2-y^2=x^2+2xy+y^2-y^2=x^2+2xy=x\left(x+2y\right)\)

b) Sửa đề: \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x-y\right)^2\left(x+y\right)^2\)

c) \(x\left(x-3y\right)^2+y\left(y-3x\right)^2=x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)

\(=x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y\)

\(=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3\)

22 tháng 8 2020

Bài 2:

a) \(\left(a+b\right)^3+\left(a-b\right)^3=\left(a+b+a-b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=2a\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)\)

\(=2a\left(a^2+3b^2\right)\)

b) \(\left(a+b\right)^3-\left(a-b\right)^3=\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=2b\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)

\(=2b\left(b^2+3a^2\right)\)

1 tháng 7 2016

Bạn có thể phân tích từng vế trong đẳng thức thì sẽ ra vế còn lại hoặc có thể phân tích cả hai vế.