Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\)
\(b,\)Để có hệ số góc bằng 3 thì \(m-1=3\Leftrightarrow m=4\)
\(2,\\ 1,\left\{{}\begin{matrix}x+4y=8\\2x+5y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+8y=16\\2x+5y=13\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+5y=13\\3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+5=13\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=1\end{matrix}\right.\\ 2,\\ a,B=\left[\dfrac{6}{a-1}+\dfrac{10-2\sqrt{a}}{\left(a-1\right)\left(\sqrt{a}-1\right)}\right]\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}\\ B=\dfrac{6\sqrt{a}-6+10-2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)^2}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}\\ B=\dfrac{4\sqrt{a}+4}{4\sqrt{a}\left(\sqrt{a}+1\right)}=\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}=\dfrac{1}{\sqrt{a}}=\dfrac{\sqrt{a}}{a}\)
\(b,C=B\left(a-\sqrt{a}+1\right)=\dfrac{\sqrt{a}\left(a-\sqrt{a}+1\right)}{a}=\dfrac{a\sqrt{a}-a+\sqrt{a}}{a}\\ C=\sqrt{a}-1+\dfrac{1}{\sqrt{a}}\ge2\sqrt{\sqrt{a}\cdot\dfrac{1}{\sqrt{a}}}-1=2-1=1\\ C_{min}=1\Leftrightarrow\sqrt{a}=\dfrac{1}{\sqrt{a}}\Leftrightarrow a=1\)
\(1,x=9\Rightarrow A=\dfrac{2\sqrt{9}+1}{\sqrt{9}}=\dfrac{2.3+1}{3}=\dfrac{7}{3}\)
\(2,B=\dfrac{x-3\sqrt{x}+4}{x-2\sqrt{x}}-\dfrac{1}{\sqrt{x}-2}\left(dk:x>0,x\ne4\right)\\ =\dfrac{x-3\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{x-3\sqrt{x}+4-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ =\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ =\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ =\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
\(3,P=\dfrac{B}{A}=\dfrac{\sqrt{x}-2}{\sqrt{x}}:\dfrac{2\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}-2}{2\sqrt{x}+1}\)
Ta có : \(\left|P\right|+P=0\Leftrightarrow\left|P\right|=-P\)
\(TH_1:x\ge4\\ \dfrac{\sqrt{x}-2}{2\sqrt{x}+1}=-\dfrac{\sqrt{x}-2}{2\sqrt{x}+1}\Leftrightarrow\dfrac{2\left(\sqrt{x}-2\right)}{2\sqrt{x}+1}=0\Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4\left(tm\right)\)
\(TH_2:x< 4\\ -\dfrac{\sqrt{x}-2}{2\sqrt{x}+1}=-\dfrac{\sqrt{x}-2}{2\sqrt{x}+1}\left(LD\right)\)
Vậy \(x=4\) thì thỏa mãn đề bài.
2: Tọa độ A là:
\(\left\{{}\begin{matrix}x=0\\y=\left(m-2\right)x+m-1=0\left(m-2\right)+m-1=m-1\end{matrix}\right.\)
=>A(0;m-1)
Tọa độ B là:
\(\left\{{}\begin{matrix}y=0\\\left(m-2\right)x+m-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x\left(m-2\right)=-\left(m-1\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{-\left(m-1\right)}{m-2}\\y=0\end{matrix}\right.\)
Vậy: \(B\left(\dfrac{-m+1}{m-2};0\right)\)
\(OA=\sqrt{\left(0-0\right)^2+\left(m-1-0\right)^2}=\sqrt{0+\left(m-1\right)^2}=\sqrt{\left(m-1\right)^2}=\left|m-1\right|\)
\(OB=\sqrt{\left(\dfrac{-m+1}{m-2}-0\right)^2+\left(0-0\right)^2}\)
\(=\sqrt{\left(-\dfrac{m-1}{m-2}\right)^2+0}=\left|\dfrac{m-1}{m-2}\right|\)
Vì Ox\(\perp\)Oy
nên OA\(\perp\)OB
=>\(S_{OAB}=\dfrac{1}{2}\cdot\left|m-1\right|\cdot\dfrac{\left|m-1\right|}{\left|m-2\right|}=\dfrac{1}{2}\cdot\dfrac{\left(m-1\right)^2}{\left|m-2\right|}\)
Để \(S_{OAB}=1\) thì \(\dfrac{1}{2}\cdot\dfrac{\left(m-1\right)^2}{\left|m-2\right|}=1\)
=>\(\left(m-1\right)^2=2\left|m-2\right|\)(1)
TH1: m>=2
Phương trình (1) sẽ trở thành: \(\left(m-1\right)^2=2\left(m-2\right)\)
=>\(m^2-2m+1-2m+4=0\)
=>\(m^2-4m+5=0\)
=>\(\left(m-2\right)^2+1=0\)(vô lý)
TH2: m<2
Phương trình (1) sẽ trở thành:
\(\left(m-1\right)^2=2\left(-m+2\right)\)
=>\(m^2-2m+1=-2m+4\)
=>m2=3
=>\(\left[{}\begin{matrix}m=\sqrt{3}\left(nhận\right)\\m=-\sqrt{3}\left(nhận\right)\end{matrix}\right.\)
Bài 1:
a: \(A=2\sqrt{3}-\sqrt{27}+\sqrt{4-2\sqrt{3}}\)
\(=2\sqrt{3}-3\sqrt{3}+\sqrt{3}-1\)
=-1
đọc kĩ đề , chỉ cần làm câu 4 ý b thôi