Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi các cạnh của tam giác lần lượt là a,b,c .
Theo đề bài, ta có:
a+b+c= 60(cm)
và \(\frac{12a}{2}=\frac{15b}{2}=\frac{20c}{2}=S\)
\(\Rightarrow a=\frac{2S}{12}\)
\(b=\frac{2S}{15}\)
\(c=\frac{2S}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{12a+15b+20c}{2+2+2}=S\)
\(12\left(a+b+c\right)+3b+8c=6\cdot S\)
\(12\cdot60+3b+8c=6S\)
\(720+3\cdot\frac{2S}{15}+8\cdot\frac{2S}{20}=6S\)
\(720+\frac{6}{15}S+\frac{16}{20}S=6S\)
\(720+\frac{2}{5}S+\frac{4}{5}S=6S\)
\(720+\frac{6}{5}S=6S\)
\(6S-\frac{6}{5}S=720\)
\(\frac{24}{5}S=720\)
\(S=150\left(cm^2\right)\)
\(\Rightarrow a=\frac{2S}{12}=\frac{2\cdot150}{12}=\frac{300}{12}=25\left(cm\right)\)
\(b=\frac{2S}{15}=\frac{2\cdot150}{15}=\frac{300}{15}=20\left(cm\right)\)
\(c=\frac{2S}{20}=\frac{2\cdot150}{20}=\frac{300}{20}=15\left(cm\right)\)
Vậy độ dài 3 cạnh của tam giác là : 25cm, 20cm, 15cm.
Ta có a+b+c=60
S=0,5*a*12=0,5*b*15=0,5*c*20
=> 12a=15b=20c
<=> 12a/60=15b/60=20c/60
=> a/5=b/4=c/3=60/12=5
Do đó a/5=5=>a=25
b/4=5=>b=20
c/3=5=>c=15
kết quả là :36cm,2,4cm,21,6cm. Đúng100%.Nhớ tích nha
Gọi 3 cạnh của tam giác có độ dài là x, y, z
\(\Rightarrow\) x+y+z=60
Như ta đã học, diện tích tam giác =12.h.a
Trong đó a là một cạnh của tam giác; h là chiều cao hạ từ một đỉnh lên cạnh a
Áp dụng vào bài này ta có: \(\frac{1}{2}.12.x=\frac{1}{2}.15.y=\frac{1}{2}.20.z\)
Vì bài này 3 cạnh có thể coi như nhau, nên có thể hoán đổi vị trí của chúng
Rút ra thay vào, ta được tam giác thỏa mãn yêu cầu bài toán có 3 cạnh là
độ dài các cạnh của tam giác tỉ lệ nghịch với chiều cao
gọi độ dài ba cạnh của tam giác là a, b, c
ta có
a+b+c=60
12a=15b=20c
suy ra
a/5=b/4=c/3
theo tính chất tỉ lệ thức, ta có
a/5=b/4=c/3=(a+b+c)/(5+4+3)=60/12=5
suy ra
a=5.5=25
b=5.4=20
c=5.3=15
vậy độ dài ba cạnh của tam giác là 25cm, 20cm, 15cm
Gọi các đường cao có độ dài là :12,15,20 (cm) lần lượt là a,b,c
a/12=b/15=c/20 và a+b+c=60
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
a/12=b/15=c/20=a+b+c/12+15+20=60/47
Suy ra tự làm tiếp
độ dài các cạnh của tam giác tỉ lệ nghịch với chiều cao
gọi độ dài ba cạnh của hình tam giác là a,b,c
ta có: a+b+c= 60 12a=15b =20c
suy ra a/5 = b/4 = c 3
theo tính chất tỉ lệ thức ,tả co :
a/5 = b/4 = c/3= [a+b+c] / [ 5 + 4+ 3] = 60/12 /= 5
suy ra a = 5.5= 25
b = 5. 4= = 20
c=5 . 3 = 15
vậy độ dài 3 cạnh là :25 cm 20cm 15 cm
k mk nha
độ dài các cạnh của tam giác tỉ lệ nghịch với chiều cao
gọi độ dài ba cạnh của tam giác là a, b, c
ta có
a+b+c=60
12a=15b=20c
suy ra
a/5=b/4=c/3
theo tính chất tỉ lệ thức, ta có
a/5=b/4=c/3=(a+b+c)/(5+4+3)=60/12=5
suy ra
a=5.5=25
b=5.4=20
c=5.3=15
vậy độ dài ba cạnh của tam giác là 25cm, 20cm, 15cm
độ dài các cạnh của tam giác tỉ lệ nghịch với chiều cao
gọi độ dài ba cạnh của tam giác là a, b, c
ta có
a+b+c=60
12a=15b=20c
suy ra
a/5=b/4=c/3
theo tính chất tỉ lệ thức, ta có
a/5=b/4=c/3=(a+b+c)/(5+4+3)=60/12=5
suy ra
a=5.5=25
b=5.4=20
c=5.3=15
vậy độ dài ba cạnh của tam giác là 25cm, 20cm, 15cm
Gọi a , b , c lần lượt là độ dài mỗi cạnh tam giác (cánh đáy)
x , y , z lần lượt là chiều cao tương ứng với mỗi cạnh đáy
Theo đề bài ,ta có :
a + b + c = 60
x = 12 ; y = 15 ; z = 20
Theo công thức tính diện tích tam giác ,ta có :
\(S=\frac{a.x}{2}=\frac{b.y}{2}=\frac{c.z}{2}\)
\(\Rightarrow\frac{12a}{2}=\frac{15b}{2}=\frac{20z}{2}\)
Đặt \(\frac{12a}{2}=\frac{15b}{2}=\frac{20c}{2}=k\)
=> \(\hept{\begin{cases}a=\frac{2k}{12}=\frac{k}{6}\\b=\frac{2k}{15}\\c=\frac{2k}{20}=\frac{k}{10}\end{cases}}\)
Thay vào biểu thức a + b + c = 60 , ta có :
\(\frac{k}{6}+\frac{2k}{15}+\frac{k}{10}=60\)
\(\frac{5k}{30}+\frac{4k}{30}+\frac{3k}{30}=60\)
\(\frac{12k}{30}=60\)
12k = 1800
k = 150
=> \(\hept{\begin{cases}x=\frac{150}{6}=25\\y=\frac{2.150}{15}=20\\z=\frac{150}{10}=15\end{cases}}\)
Thanks.