Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$n^3-3n^2-3n-1=n(n^2+n-1)-4(n^2+n-1)+2n-5$
$=(n-4)(n^2+n-1)+2n-5$
Để $n^3-3n^2-3n-1\vdots n^2+n-1$ thì:
$2n-5\vdots n^2+n-1(1)$
$\Rightarrow n(2n-5)\vdots n^2+n-1$
$\Rightarrow 2(n^2+n-1)-7n+2\vdots n^2+n-1$
$\Rightarrow 7n-2\vdots n^2+n-1(2)$
Từ $(1); (2)\Rightarrow 7n-2-3(2n-5)\vdots n^2+n-1$
$\Rightarrow n+13\vdots n^2+n-1(3)$
Từ $(1); (3)\Rightarrow 2(n+13)-(2n-5)\vdots n^2+n-1$
$\Rightarrow 31\vdots n^2+n-1$
$\Rightarrow n^2+n-1\in\left\{\pm 1; \pm 31\right\}$
Đến đây bạn xét các TH để tìm $n$ thôi.
\(n^3-2⋮n-2\)
=>\(n^3-8+6⋮n-2\)
=>\(6⋮n-2\)
=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)
hay \(n\in\left\{0;1;-1\right\}\)
bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...) hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !
bạn hãy nhân đa thức với đa thức nhé !
Mình hướng dẫn bạn rồi đấy ! ok!
k nha !