Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1 x>y
Ta có (xy+1)2=x^2.y^2+2xy+1>x2y2+x−y>x^2.y^2
Do đó loại vì x^2.y^2 làSCP.
TH2 x<y cm tương tự, loại.
Do đó x=y.
2y+3=x2
Với y=0 suy ra 20+3=x2 suy ra 4 = x2
suy ra x=2 ( vì x thuộc N)
Với y>0 suy ra VP = 2y+3 luôn là số lẻ
nên 2y+3 khác x2
vậy y=0,x=2
giúp. Mk đang cần gấp<=> x2 + 2x2y2 + 2y2 - x2y2 + 2x2 - 2 = 0
<=> -x2 + x2y2 + 2y2 - 2 = 0
<=> x2 (y2 - 1) + 2 (y2 - 1) = 0
<=> (x2 + 2)(y2 - 1) = 0
Vì x2 ≥0 với mọi x => y2 - 1 = 0 <=> y = -1 và y = 1.
Vậy x ∈R , y = {-1;1}
Ta có : y2 = xy \(\Rightarrow\)x = y ( 1 )
x2 = yz hay x2 = xz \(\Rightarrow\)x = z ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)x = y = z
Vậy x = y = z
\(\frac{x}{1998}=\frac{y}{1999}=\frac{z}{2000}=t=\frac{x-z}{1998-2000}=\frac{x-y}{1998-1999}=\frac{y-z}{1999-2000}.\)
Hay: \(\frac{x-z}{-2}=\frac{x-y}{-1}=\frac{y-z}{-1}\Rightarrow x-z=2\left(x-y\right)=2\left(y-z\right)\)(1)
a) \(\left(x-z\right)^3=\left(x-z\right)^2\left(x-z\right)=\left(2\left(x-y\right)\right)^2\left(2\left(y-z\right)\right)\)
\(\Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\)ĐPCM a)
b) Từ (1) => x + z = 2y
Để \(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\Rightarrow\frac{x+y}{\frac{1}{2}}=\frac{y+z}{\frac{1}{5}}=\frac{z+x}{\frac{1}{3}}\)
Từ \(\Rightarrow\frac{x+y}{\frac{1}{2}}=\frac{y+z}{\frac{1}{5}}=\frac{x+y+y+z}{\frac{1}{2}+\frac{1}{5}}=\frac{4y}{\frac{7}{10}}=\frac{2y}{\frac{1}{3}}\)
=>y=0 =>x=0 => z=0 Suy ra hệ thức: x-y/4=y-z/5 luôn đúng. ĐPCM
\(\text{A=|x| - |x-2| }\le|x-x+2|=2\)
=> MaxA=2 , dấu bằng xảy ra khi \(x\ge2\)