K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
26 tháng 10 2021

Đặt \(t=sinx\)

Do \(x\in\left(0,\frac{\pi}{2}\right)\)nên \(t\in\left(0,1\right)\).

\(P=\frac{2}{1-t}+\frac{1}{t}\ge\frac{\left(\sqrt{2}+1\right)^2}{1-t+t}=3+2\sqrt{2}\)

Dấu \(=\)khi \(\frac{\sqrt{2}}{1-t}=\frac{1}{t}\Leftrightarrow t=\sqrt{2}-1\)

12 tháng 12 2018

1.B= -(x^2 - 4x - 3)
= -(x^2 - 2x2 + 4 - 7)
= -(x - 2)^2 + 7 ≤ 7 
 Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2
=>Amax = 7 khi x=2
2. chịu tự đi mà làm ngốc thật

12 tháng 12 2018

2.ĐK: \(x\ne-1\)

 \(Q=\frac{2x^2+2}{\left(x+1\right)^2}=\frac{\left(x-1\right)^2+\left(x+1\right)^2}{\left(x+1\right)^2}=\frac{\left(x-1\right)^2}{\left(x+1\right)^2}+1\ge1\forall x\)

Dấu "=" xảy ra khi: \(x-1=0\Rightarrow x=1\)

Vậy GTNN của Q là 1 khi x = 1

1. \(B=4x-x^2+3=-x^2+4x-4+7=-\left(x-2\right)^2+7\le7\forall x\)

Dấu "=" xảy ra khi \(x-2=0\Rightarrow x=2\)

Vậy GTLN của B là 7 khi x = 2

12 tháng 5 2017

x^2/1+x^4 bé nhất khi 1 + x^4 bé nhất => x^4-0 => x^4 + 1 = 1=> x=0

Thay x=0 vào x^2/ 1+ x^4 có 0^2/ 1+0^4= 0

Vậy giá trị nhỏ nhất của x^2/ 1+ x^4 là 0 tại x=0

13 tháng 5 2018

Bài 1:

a) xét tg ABE và tg ACF có:

AEB = AFC = 90 độ

BAE = CÀ( A chung )

=> tg ABE = tg ACF ( g.g)

=> AF/AB = AE/AC

=> AE*AC = AF*AB

20 tháng 2 2020

Bạn rút gọn sai rồi, mình nhìn đề bài b) cho x>2 thì là biết chắc bạn sai , mình làm lại nhé : ( ĐKXĐ : tự làm )

a) \(Q=\frac{x\left(x+2\right)}{\left(x-2\right)^2}:\left(\frac{\left(x+2\right)\left(x-2\right)+x+6-x^2}{x\left(x-2\right)}\right)\)

\(=\frac{x\left(x+2\right)}{\left(x-2\right)^2}:\frac{x+2}{x\left(x-2\right)}\)

\(=\frac{x\left(x+2\right)}{\left(x-2\right)^2}\cdot\frac{x\left(x-2\right)}{x+2}=\frac{x^2}{x-2}\)

Vậy \(Q=\frac{x^2}{x-2}\)

b) Ta có : \(Q=\frac{x^2}{x-2}=\frac{x^2-4+4}{x-2}=x+2+\frac{4}{x-2}=x-2+\frac{4}{x-2}+4\)

Do \(x>2\Rightarrow x-2>0\) và \(\frac{4}{x-2}>0\)do đó áp dụng BĐT Cô si cho 2 số dương ta được :

\(x-2+\frac{4}{x-2}\ge2\sqrt{\left(x-2\right).\left(\frac{4}{x-2}\right)}=2\cdot\frac{1}{2}=1\)

\(\Rightarrow Q\ge1+4=5\)

Vậy : GTNN của \(Q=5\)

P/s : Ai vào kiểm tra hộ cái :)) Sợ sai lắm nhé, cảm ơn nha 33

20 tháng 2 2020

Nếu chưa học Cô si thì chứng minh rồi dùng thôi :

Bài này sử dụng Cô - si hai số nên cần chứng minh BĐT :

\(a+b\ge2\sqrt{ab}\left(a,b>0\right)\)

Thật vậy : \(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )

Do đó \(a+b\ge2\sqrt{ab}\) với a,b >0

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

31 tháng 10 2019

1/ n=3

31 tháng 10 2019

\(B=x^2+\frac{1}{x^2}\ge\sqrt{x^2\cdot\frac{1}{x^2}}=1\)

Dấu "=" xảy ra tại \(x=y=1\)

3 tháng 12 2016

x-1 là sao bạn

3 tháng 12 2016

mink nhầm x=-1