Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2015.2015}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}=\frac{2014}{2015}< 1\)
=> A < 1 (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
mk gợi ý thui nhé :
cộng 96 phân số theo từng cặp:
a/b = (1/1+1/96)+(1/2+1/95)+(1/3+1/94)+...+(1/48+1/49)
...........................v.v
tự làm nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
A=(1+1/96)(1/2+1/95).......................(1/48+1/49)
<=>A=97/96+97/190.........................97/2352
<=>A=97(1/96 x 1/190 x .................. x 1/2352)\(⋮97\)
=>A\(⋮97\)
k cho em mình nhé!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{a}{b}=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{95}\)
\(\Rightarrow\frac{a}{b}=\left(\frac{1}{2}+\frac{1}{95}\right)+\left(\frac{1}{3}+\frac{1}{94}\right)+...+\left(\frac{1}{48}+\frac{1}{49}\right)\)
\(\Rightarrow\frac{a}{b}=\frac{97}{2.95}+\frac{97}{3.94}+...+\frac{97}{48.49}\)
Đặt các thừa số phụ lần lượt là k1; k2; k3; ... ; k47
\(\Rightarrow\frac{a}{b}=\frac{97\left(k_1+k_2+k_3+...+k_{49}\right)}{2.95.3.94...48.49}\)
Vì b không chứa thừa số 97 mà a có nên \(a⋮97\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
Ta có: \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}< \frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)
\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}< \frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{10}{50}=\frac{1}{5}\)
Do đó \(A< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\)
Vậy \(A< \frac{4}{5}\)
<br class="Apple-interchange-newline"><div id="inner-editor"></div>141 +142 +...+150 <140 +140 +...+140 =1040 =14
151 +152 +...+160 <150 +150 +...+150 =1050 =15
Do đó A<13 +14 +15 =4760 <4860 =45
Vậy A<45