Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left\{{}\begin{matrix}x=a+2\\y=b+2\\z=c+2\end{matrix}\right.\)\(\left(a,b,c>0\right)\). Cần cm \(abc\le1\)
Từ \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\Leftrightarrow\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}=1\)
Áp dụng BĐT AM-GM ta có:
\(\dfrac{1}{a+2}=\dfrac{1}{2}-\dfrac{1}{b+2}+\dfrac{1}{2}-\dfrac{1}{c+2}\)
\(\ge\dfrac{b}{2\left(b+2\right)}+\dfrac{c}{2\left(c+2\right)}\ge2\sqrt{\dfrac{bc}{4\left(b+2\right)\left(c+2\right)}}\)
Tương tự rồi cộng theo nhân theo vế
\(\dfrac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\dfrac{abc}{\sqrt{\left(a+2\right)^2\left(b+2\right)^2\left(c+2\right)^2}}\)
\(\Leftrightarrow\dfrac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\dfrac{abc}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)
\(\Leftrightarrow abc\ge1\)*đúng hay ta có ĐPCM*
Áp dụng công thức : \(x^3+y^3\ge x^2y+xy^2\) ( tự c/m bổ đề này nhé !! )
Ta có : \(\dfrac{1}{1+x^3+y^3}\le\dfrac{xyz}{xyz+x^2y+xy^2}=\dfrac{xyz}{xy\left(z+x+y\right)}=\dfrac{z}{x+y+z}\)(1)
C/m tương tự ta được :\(\dfrac{1}{1+y^3+z^3}\le\dfrac{x}{x+y+z}\)(2)
\(\dfrac{1}{1+z^3+x^3}\le\dfrac{y}{x+y+z}\)(3)
Cộng từng vế của (1) (2)(3) => ĐPCM.
Aps dụng bất đẳng thức cô si cho 2 số 1-x và 1-x ta có:
\(\dfrac{1-x+1-z}{2}\ge\sqrt{\left(1-x\right)\left(1-z\right)}\)
\(\Leftrightarrow\left(1-z\right)\left(1-x\right)\le\left(\dfrac{1-z+1-x}{2}\right)^2\)
\(\Leftrightarrow4\left(1-z\right)\left(1-x\right)\le\left(1+y\right)^2\)
\(\Leftrightarrow4\left(1-x\right)\left(1-y\right)\left(1-z\right)\le\left(1+y\right)^2\left(1-y\right)\)
Ta có: \(1-y^2\le1\)
\(\left(1+y\right)^2\left(1-y\right)=\left(1+y\right)\left(1-y\right)^2=\left(x+2y+z\right)\left(1-y\right)^2\)
Do đó: \(4\left(1-x\right)\left(1-y\right)\left(1-z\right)\le x+2y+z\)
Áp dụng BĐT cô-si cho 2 số 1-x và 1-z ta được:
\(\dfrac{1-x+1-z}{2}\ge\sqrt{\left(1-x\right)\left(1-z\right)}\)
\(\Leftrightarrow\text{ ( 1 − x ) ( 1 − z )\le(\dfrac{\text{1 − x + 1 −}z}{2})^2 }\)
\(\Leftrightarrow\text{4 ( 1 − x ) ( 1 − z ) ≤ ( 1 + y ) ^2}\)
\(\Leftrightarrow\text{ 4 ( 1 − x ) ( 1 − z ) ( 1 − y ) ≤ ( 1 + y ) ^2 ( 1 − y )}\)
mặt khác\(\text{ 1 − y ^2 ≤ 1}\)
\(\text{( 1 + y ) ^2 ( 1 − y ) = ( 1 + y ) ( 1 − y ^2) = ( x + 2y + z ) ( 1 − y^2 ) (1+y)^2(1−y)=(1+y)(1−y^2)=(x+2y+z)(1−y^2)}\)Do đó: 4(1−x)(1−y)(1−z)≤x+2y+z
\(\Leftrightarrow\frac{4}{x\left(y+z\right)}\ge1\)
mà \(x\left(y+z\right)\le\frac{\left(x+y+z\right)^2}{4}\)
\(\Rightarrow\frac{4}{x\left(y+z\right)}\ge\frac{4}{\frac{\left(x+y+z\right)^2}{4}}=\frac{16}{\left(x+y+z\right)^2}=\frac{16}{16}=1\left(đpcm\right)\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{x+y}{xy}-\frac{x+y}{z\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(z+x\right)\left(y+z\right)=0\)
<=> x=-y hoặc y=-z hoặc z=-x
=> B=0
( Các bước làm tóm tắt ):))
\(xy+yz+xz\ge x+y+z\)
\(min=1\); \(x=1,y=1,z=1\); \(x=2,y=2,z=2\)thỏa mãn đk: \(xy+yz+xz\ge x+y+z\)
\(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\ge1\)\(\Rightarrow\)\(\frac{1}{\sqrt{1^3+8}}+\frac{1}{\sqrt{1^3+8}}+\frac{1}{\sqrt{1^3+8}}\ge1\)\(\Rightarrow\)\(\frac{1}{\sqrt{1^3+8}}3\ge1\)\(\Rightarrow\)\(\frac{1}{\sqrt{1+8}}3\ge1\)\(\Rightarrow\)\(\frac{1}{\sqrt{9}}3\ge1\)\(\Rightarrow\)\(\frac{1}{3}3\ge1\)(đk :\(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^3}{\sqrt{z^3+8}}\ge1\))
Ta có đánh giá quen thuộc sau: \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)kết hợp giả thiết \(xy+yz+zx\ge x+y+z\)suy ra \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\ge3\left(x+y+z\right)\Rightarrow xy+yz+zx\ge x+y+z\ge3\)
Dùng bất đẳng thức Bunyakosky dạng phân thức xét vế trái của bất đẳng thức:
\(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}=\frac{x^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}}+\frac{y^2}{\sqrt{\left(y+2\right)\left(y^2-2y+4\right)}}+\frac{z^2}{\sqrt{\left(z+2\right)\left(z^2-2z+4\right)}}\ge\frac{2x^2}{x^2-x+6}+\frac{2y^2}{y^2-y+6}+\frac{2z^2}{z^2-z+6}\ge\frac{2\left(x+y+z\right)^2}{\left(x^2+y^2+z^2\right)+6-\left(x+y+z\right)+12}\ge\frac{2\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+zx\right)-\left(x+y+z\right)+12}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}\)Đặt x + y + z = t ≥ 3 xét\(\frac{2t^2}{t^2-t+12}-1=\frac{t^2+t-12}{t^2-t+12}=\frac{\left(t+4\right)\left(t-3\right)}{t^2-t+12}\ge0\)(đúng với mọi t ≥ 3)
Như vậy, \(\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}\ge1\)hay \(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\ge1\)(đpcm)
Đẳng thức xảy ra khi x = y = z = 1
CM cái j v đề thiếu rồi