\(x+y+z=1\)

\(CMR:x^2+y^2+z^2\ge\frac{1}{3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2017

Có (a-b)^2 >=0

<=> a^2 + b^2 >= 2ab (1) ( với mọi a,b)

Tương tự có b^2 + c^2 >= 2bc(2)

                    c^2 + a^2 >= 2ca(3)

Cộng vế theo vế của (1),(2) và (3) ta có : 2.(a^2+b^2+c^2)>= 2.(ab+bc+ca)

<=> 2.(a^2+b^2+c^2) +a^2+b^2+c^2 >= a^2+b^2+c^2+2.(ab+bc+ca)

<=>3.(a^2+b^2+c^2)>= (a+b+c)^2

<=> a^2+b^2+c^2 >= (a+b+c)^2/3

Áp dụng bđt trên thì x^2+y^2+z^2 >= (x+y+z)^2/3 = 1/3 => ĐPCM

Dấu "=" xảy ra <=> x=y=z=1/3

NV
23 tháng 5 2020

Với mọi x;y;z ta luôn có:

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Leftrightarrow3x^2+3y^2+3z^2\ge x^2+y^2+z^2+2xy+2yz+2zx\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2=\frac{1}{3}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

31 tháng 7 2017

Áp dụng bất đẳng thức Bunhiacopxki ta có :

\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(1.x+1.y+1.z\right)^2\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{3}\)

17 tháng 5 2017

Bất đẳng thứ côsi hả bạn

17 tháng 5 2017

Mình sửa lại đề nhé:

\(\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\le\frac{3}{2}\le\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)

Dễ dàng chứng minh được: \(x^2+1\ge2x\Leftrightarrow\frac{x}{x^2+1}\le\frac{x}{2x}=\frac{1}{2}\)

Tương tự, ta cũng có: \(\frac{y}{y^2+1}\le\frac{1}{2};\frac{z}{z^2+1}\le\frac{1}{2}\)

Cộng từng vế của 3 BĐT trên ta được ĐPCM.

Ta chứng minh BĐT: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge9\)

\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge6\)

BĐT này đúng với \(\frac{a}{b}+\frac{b}{a}\ge2\)

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\), ta được:

\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{3+x+y+z}\ge\frac{9}{3+3}\ge\frac{3}{2}\)

5 tháng 5 2018

nhầm mk giải lại

vì x;y;z là 3 số dương \(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>=\frac{9}{x+y+z}\)(bđt cauchy schwarz dạng engel) 

dấu = xảy ra khi x=y=z=2

mà x+y+z<=6\(\Rightarrow\frac{9}{x+y+z}>=\frac{9}{6}=\frac{3}{2}\)\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}.=\frac{3}{2}\)

5 tháng 5 2018

vì x;y;z là 3 số dương \(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>=\frac{9}{x+y+z}=\frac{9}{6}=\frac{3}{2}\)(bđt caucht schwarz dạng engel)

dấu = xảy ra khi \(x=y=z=\frac{6}{3}=2\)

vậy \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>=\frac{3}{2}\)

20 tháng 7 2017

1.a>0.√a

2.c/mb/z+x/y=a/b6

=x/y=y/x

4.xxy/2 2

5.a/b+ab=ab2