\(x^2+2y^2+\dfrac{1}{x}+\dfrac{24}{y...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2019

\(H=x^2+2y^2+\frac{1}{x}+\frac{24}{y}=x^2+1+2y^2+8+\frac{1}{x}+\frac{24}{y}-9\)

Vì x ; y > 0 , áp dụng BĐT Cauchy , ta có :

\(H\ge2x+8y+\frac{1}{x}+\frac{24}{y}-9=x+2y+x+\frac{1}{x}+6\left(y+\frac{4}{y}\right)-9\)

\(\ge5+2+6.4-9=22\)

Dấu " = " xảy ra \(\Leftrightarrow x=1;y=2\)

29 tháng 3 2016

Mik mới lớp 8,,,

29 tháng 3 2016

GTNN của A là 22

17 tháng 2 2018

Áp dụng bất đẳng thức AM - GM:

\(P=4x+3y+\dfrac{6}{x}+\dfrac{9}{2y}\)

\(=\left(\dfrac{3}{2}x+\dfrac{6}{x}\right)+\left(\dfrac{1}{2}y+\dfrac{9}{2y}\right)+\left(\dfrac{5}{2}x+\dfrac{5}{2}y\right)\)

\(\ge2\sqrt{\dfrac{3}{2}x\times\dfrac{6}{x}}+2\sqrt{\dfrac{1}{2}y\times\dfrac{9}{2y}}+\dfrac{5}{2}\times5\)

\(=\dfrac{43}{2}\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\dfrac{3}{2}x=\dfrac{6}{x}\\\dfrac{1}{2}y=\dfrac{9}{2y}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\left(\text{nhận}\right)\)

Vậy \(Min_P=\dfrac{43}{2}\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

31 tháng 12 2018

Áp dụng bđt \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\)

\(x^2+2y^2\ge\dfrac{\left(x+2y\right)^2}{2}=\dfrac{25}{2}\)

Ta có:

\(x+2y\ge2\sqrt{x2y}\)

\(\Leftrightarrow5\ge2\sqrt{2xy}\)

\(\Rightarrow25\ge4.2xy\Rightarrow xy\le\dfrac{25}{8}\)

Áp dụng bđt Cosi

\(\dfrac{1}{x}+\dfrac{24}{y}\ge2\sqrt{\dfrac{24}{xy}}\ge2\sqrt{\dfrac{24}{\dfrac{25}{8}}}=2\sqrt{\dfrac{24.8}{25}}=\dfrac{16}{5}\sqrt{3}\)

\(\Rightarrow H\ge\dfrac{16}{5}\sqrt{3}+\dfrac{25}{2}\)

Dấu bằng xảy ra khi:

\(\left\{{}\begin{matrix}x=2y\\x+2y=5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=\dfrac{5}{4}\end{matrix}\right.\)

25 tháng 7 2018

ta có : \(H=x^2+2y^2+\dfrac{1}{x}+\dfrac{24}{y}=x^2+\dfrac{1}{x}+2y^2+\dfrac{24}{y}\)

\(\Rightarrow H\ge2\sqrt{x}+2\sqrt{48y}\) dấu "=" xảy ra khi \(x=1;y=2\)

thế lại ta có : \(H_{min}=2+8\sqrt{6}\)

vậy ....................................................................................................................

DD
23 tháng 5 2021

\(x\ge2y\Rightarrow x-y\ge y\Rightarrow x\left(x-y\right)\ge2y^2\Rightarrow x^2-xy-2y^2\ge0\).

\(\left(x-2y\right)^2\ge0\Leftrightarrow x^2-4xy+4y^2\ge0\)

\(\Rightarrow\left(x^2-xy-2y^2\right)+\left(x^2-4xy+4y^2\right)\ge0\)

\(\Leftrightarrow x^2+y^2\ge\frac{5}{2}xy\)

\(A=\frac{x^2+y^2}{xy}\ge\frac{\frac{5}{2}xy}{xy}=\frac{5}{2}\)

Dấu \(=\)xảy ra khi \(x=2y>0\)

8 tháng 11 2019

Câu hỏi của Kiều Trang - Toán lớp 9 - Học toán với OnlineMath

3 tháng 10 2017

mình làm ra rồi khỏi cần giúp nữa