\(x^3+y^3=1\). Tính giá trị của biểu thức P= \(2x^6+3x^3y^{^{ }3}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2018
https://i.imgur.com/26BuYUv.jpg
20 tháng 4 2018
https://i.imgur.com/8fnQONt.jpg
8 tháng 4 2021

2x6 + 3x3y3 + y3 + y6

= (2x6 + 2x3y3) + (x3y3 + y3 + y6)

= 2x3(x3 + y3) + y3(x3 + y3 + 1) Vì x3 + y3 = 1

= 2x3 . 1 + y3 . 2

= 2(x3 + y3)

= 2

11 tháng 7 2018

\(P=-3x\left(y^2+2x\right)-3\left(1-xy^2\right)+6x^2\)

\(=-3xy^2-6x^2-3+3xy^2+6x^2\)

\(=-3\)

Vậy biểu thức P không phụ thuộc vào biến

\(Q=\left(2x+1\right)\left(3y-1\right)-\left(y-1\right)\left(6x+3\right)-2\left(2x+5\right)\)

\(=6xy-2x+3y-6xy-3y+6x+3-4x-10\)

\(=-10\)

Vậy biểu thức Q không phụ thuộc vào biến

12 tháng 7 2017

a)

\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)

Nên \(x+y+2=0\Rightarrow x+y=-2\)

Ta có :

\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)

Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)

\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)

hay \(M\le-2\)

Dấu "=" xảy ra khi \(x=y=-1\)

                    Vậy \(Max_M=-2\)khi \(x=y=-1\)

12 tháng 7 2017

c)  ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^  , mình làm bài này với điều kiện x ,y ,z ko âm nhé )

Ta có :

\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)

\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)

\(\Rightarrow y=2-x\)

Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)

\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)

\(\Leftrightarrow z=\frac{4-x}{3}\)

Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :

\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)

\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)

\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))

Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )

Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)

4 tháng 1 2020

A = [x3 + y3 - (x+y)3] + 27x6y6

= [x3 + y3 - x3 - y3 - 3xy(x + y)]3 + 27x6y6

= (-3x2y2)3 + 27x6y6

= 0

4 tháng 1 2020

P/s : Bạn Lê Quang Phúc làm đúng rồi nhá :vv Tiếc là cái dòng đầu tiên thiếu mũ 3 ở chỗ [x3 + y3-(x+y)3]3

\(A=\left[x^3+y^3-\left(x+y\right)^3\right]^3+27x^6y^6\)

\(A=\left[x^3+y^3-x^3-y^3-3xy\left(x+y\right)\right]^3+27x^6y^6\)

\(A=\left(-3x^2y^2\right)^3+27x^6y^6\)

\(A=-27x^6y^6+27x^6y^6\)

\(A=0\)

P/s: Ko chắc lắm.

\(A=x^3+y^3+6xy-3x-3y+1\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x+y\right)+6xy+1\)

\(A=\left(x+y\right)\left(x^2+2xy+y^2-2xy-xy\right)-3\left(x+y\right)+6xy+1\)

\(A=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]-3\left(x+y\right)+6xy+1\)

\(A=\left(x+y\right)\left[\left(x+y\right)^2-3xy-3\right]+6xy+1\)

Thay x+y=2 vào biểu thức, ta có:

\(A=2\left(2^2-3xy-3\right)+6xy+1\)

\(A=2\left(1-3xy\right)+6xy+1\)

\(A=2-6xy+6xy+1\)

\(A=3\)

\(B=x^2-y^2+4y+1\)

\(B=\left(x-y\right)\left(x+y\right)+4y+1\)

\(B=2\left(x-y\right)+4y+1\)

\(B=2x-2y+4y+1\)

\(B=2x+2y+1\)

\(B=2\left(x+y\right)+1=2.2+1=5\)

\(E=\left(x^3+3xy^2+3x^2y+y^3\right)+3\left(x+y\right)-3\left(x^2+2xy+y^2\right)+2016\)

\(=\left(x+y\right)^3+3\left(x+y\right)-3\left(x+y\right)^2+2016\)

\(=21^3+3.21-3.21^2+2016\)

\(=\left(21-1\right)^3+2017=8000+2017=10017\)

20 tháng 10 2019

Mình không viết lại đề nha ~

\(E=\left(x^3+3xy^2+3x^2y+y^3\right)+\left(3y+3x\right)+\left(3x^2+6xy+3y^2\right)+2016\)

\(E=\left(x+y\right)^3+3\left(x+y\right)+3\left(x+y\right)^2+2016\)

\(E=\left(x+y\right)[\left(x+y\right)^2+3+\left(x+y\right)]+2016\)

\(E=21\left(21^2+3+21\right)+2016\)

\(E=21.465+2016\)

\(E=9765+2016=11781\)

Bài làm

a) 812 : 46 = 236 : 212 = 214 

b) 276 : 92 = 318 : 34 = 314 

còn tiếp....

Bài làm

c) \(\frac{9^{15}.25^3.4^3}{3^{10}.50^6}\)

\(=\frac{3^{30}.5^6.2^6}{3^{10}.2^6.5^{12}}\)

\(=\frac{3^{20}.1.1}{1.1.5^6}\)

\(=\frac{\text{3486784401}}{\text{15625}}\)