Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(H=x^2+2y^2+\frac{1}{x}+\frac{24}{y}\)
\(\Leftrightarrow H=\left(\frac{1}{2}x^2+\frac{1}{2x}+\frac{1}{2x}\right)+\left(\frac{3}{2}y^2+\frac{12}{y}+\frac{12}{y}\right)+\left(\frac{1}{2}x^2+\frac{1}{2}\right)+\left(\frac{1}{2}y^2+2\right)-\frac{5}{2}\)
Áp dụng BĐT AM-GM ta có:
\(H\ge3.\sqrt[3]{\frac{1}{2}x^2.\frac{1}{2x}.\frac{1}{2x}}+3.\sqrt[3]{\frac{3}{2}y^2.\frac{12}{y}.\frac{12}{y}}+2.\sqrt{\frac{1}{2}x^2.\frac{1}{2}}+2.\sqrt{\frac{1}{2}y^2.2}-\frac{5}{2}=\frac{3}{2}+18+x+2y-\frac{5}{2}\ge22\)Dấu " = " xảy ra <=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)( tự giải nhé )
KL:....
\(H=\left(x^2+1\right)+\left(2y^2+8\right)+\frac{1}{x}+\frac{24}{y}-9\)
\(\ge2\sqrt{x^2.1}+2\sqrt{2y^2.8}+\frac{1}{x}+\frac{24}{y}-9\)
\(=2x+8y+\frac{1}{x}+\frac{24}{y}-9\)
\(=\left(\frac{1}{x}+x\right)+\left(\frac{24}{y}+6y\right)+x+2y-9\)
\(\ge2\sqrt{\frac{1}{x}.x}+2\sqrt{\frac{24}{y}.6y}+x+2y-9\)
\(=2+24+x+2y-9\ge26+5-9=22\)
Dấu "=" xảy ra khi x = 1; y = 2
Vậy ....
1/y thành 1/x nhé
H = x2 + 2y2 + 1/x + 24/y
H = ( x2 + 1 ) + 2 ( y2 + 4 ) + 1/x + 24/y
H \(\ge\)2x + 8y + 1/x + 24/y = ( x + 1/x ) + ( 6y + 24y ) x + 2y - 9
\(\ge\)2 + 24 + 5 - 9 = 22
Dấu " = " xảy ra khi x = 1 ; y = 2
Ta có \(y^3-1=\left(y-1\right)\left(y^2+y+1\right)=-x\left(y^2+y+1\right)\)
(vì \(xy\ne0\Rightarrow x,y\ne0\))
\(\Rightarrow x-1\ne0;y-1\ne0\)
\(\Rightarrow\frac{x}{y^3-1}=\frac{-1}{y^2+y+1}\)
\(x^3-1=\left(x-1\right)\left(x^2-x+1\right)=-y\left(x^2-x+1\right)\Rightarrow\frac{y}{x^3-1}=\frac{-1}{x^2+x+1}\)
\(\Rightarrow\frac{x}{y^3-1}+\frac{y}{x^3-1}=\frac{-1}{y^2+y+1}+\frac{-1}{x^2+x+1}\)
\(=-\left(\frac{x^2+x+1+y^2+y+1}{\left(x^2+x+1\right)\left(y^2+y+1\right)}\right)=-\left(\frac{\left(x+y\right)^2-2xy+\left(x+y\right)+2}{x^2y^2+\left(x+y\right)^2-2xy+xy\left(x+y\right)+xy+\left(x+y\right)+1}\right)\)
\(=-\frac{4-2xy}{x^2y^2+3}\Rightarrow\frac{x}{y^3-1}+\frac{y}{x^3-1}-\frac{2\left(xy-2\right)}{x^2y^2+3}=0\)
Bạn nên viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
\(A\)xác định \(\Leftrightarrow x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\ne0\)
\(\Leftrightarrow x^2y^2+1+x^2-x^2y-y+y^2\ne0\)
\(\Leftrightarrow\left(x^2y^2+y^2\right)+\left(x^2+1\right)-\left(x^2y+y\right)\ne0\)
\(\Leftrightarrow y^2\left(x^2+1\right)+\left(x^2+1\right)-y\left(x^2+1\right)\ne0\)
\(\Leftrightarrow\left(x^2+1\right)\left(y^2-y+1\right)\ne0\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\)
Ta có: \(\hept{\begin{cases}x^2+1>0\forall x\\\left(y-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall y\end{cases}}\)\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]>0\forall x;y\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\forall x;y\)
\(\Leftrightarrow A\ne0\forall x;y\)
khai triển ra còn 4x^2+4y^2+1/x^2+1/y^2+8 =4(x^2+y^2)+(1/x^2+1/y^2)+8
>/ 4.(x+y)^2/2+8/(x+y)^2+8=18
"=" khi x=y=1/2
Đặt \(2x+\frac{1}{x}=a;2y+\frac{1}{y}=b\)
Ta có \(a^2+b^2>=2ab=>2\left(a^2+b^2\right)>=a^2+b^2+2ab=\left(a+b\right)^2\)
=>\(a^2+b^2>=\frac{\left(a+b\right)^2}{2}\)
Ta cần tìm giá trị nhỏ nhất của a+b
ta có \(a+b=2x+\frac{1}{x}+2y+\frac{1}{y}=2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}=2+\frac{1}{x}+\frac{1}{y}\)
Áp dụng BĐT cauchy \(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\)
=>\(a+b>=2+\frac{4}{x+y}=6\)
=>a\(a^2+b^2>=\frac{6^2}{2}=18\)
=>Min \(\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)=18
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
Chứng minh BĐT phụ:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
Giờ thì chứng minh thôi:3
Áp dụng BĐT Cauchy-schwarz dạng engel ta có:
\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(2x+2y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}\)
\(=8\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)
Vậy \(P_{min}=8\Leftrightarrow x=y=\frac{1}{2}\)
Bài này bạn làm đúng rồi nhưng mà bạn bị nhầm phép tính: \(\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}=18\)
=> Min P=18
22 nha
y=2 nha