\(\widehat{AOB}\)có OC là tia phân giác. Vẽ tia OM nằm giữa OB và OC. Chứng minh 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2018

a)OB nằm giữa hai tia còn lại vì 1300 > 500

b)BOC + AOB = AOC

hay BOC + 500 =1300

BOC            =1300 - 50 =800

c)AOM là góc vuông

4 tháng 2 2019

1) \(\frac{145.146-15}{145.145+130}=\frac{145.145+145-15}{145.145+130}=\frac{145.145+130}{145.145+130}=1\)

2) \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{31.34}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{31}-\frac{1}{34}=1-\frac{1}{34}=\frac{33}{34}\)

4 tháng 5 2019


                                  a) tia Ob nằm giữa Oa và Ob vì :

                                 ^aOb+^bOc=^aOc

                                  ^aOb<^bOc(600<1200)

                              b) VìtiaObnằm giữa OavàOcnên:

                                    ^aOb+^bOc=^aOc

                                     600+ ^bOc=1200

                                                        ^bOc=1200600

                                                ^bOc=600

                         TiaOblàtiaphângiaccua^aOcvì:

                                           ^aOb+^bOc=^aOc

                                            ^aOb=^bOc=1600

P/s : bạn vào câu hỏi tương tự để xem thêm nhé !

 
6 tháng 7 2020

a,Vì ^AOB < ^AOC (60o < 120o)

=>OB nằm giữa OA và OC   (1)

b,Ta có ^AOB + ^BOC = ^AOC

             60o + ^BOC = 120o

                       ^BOC = 60o

=>^AOB = ^BOC = 60(2)

Từ (1) và (2)=>Ob là p/g ^AOC

c,TA có ^AOC + ^COD = 180o(góc bẹt)

=>^COD=180o - 120o

=>^COD=60o

=> ^COE=^EOD=\(\frac{60^o}{2}=30^o\)

Ta có: ^EOB=^BOC + ^COE

          ^EOB=60o + 30o

           ^EOB= 90o

16 tháng 3 2020

a) Tự zẽ hình nha

ta có\(\widehat{bOc}=\widehat{bOa}-\widehat{cOa}\)

=>\(\widehat{bOc}=120^0-100^0=20^0\)

b)\(tacó\hept{\begin{cases}\widehat{bOm}=\widehat{bOa}-\widehat{mOa}=120^0-110^0=10^0\\\widehat{mOc}=\widehat{mOa}-\widehat{cOa}=120^0-110^0=10^0\end{cases}}\)

=>\(\widehat{bOm}=\widehat{mOc}\left(1\right)\)

ta lại có \(\widehat{bOa}>\widehat{mOc}>\widehat{cOa}\)

=>\(mO\)nằm giữa 2 tia \(Ob\)zà \(Oc\left(2\right)\)

từ 1 zà 2 suy ra

mO là tia phân giác của góc \(bOc\)