Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ
a)BE là đường p/g \(\Delta ABC\)
\(\Rightarrow\dfrac{EA}{EC}=\dfrac{AB}{BC}\)
\(\Rightarrow\dfrac{EA}{EC}=\dfrac{3}{7}\)
\(\Rightarrow\dfrac{EA}{3}=\dfrac{EC}{7}=\dfrac{EA+EC}{3+7}=\dfrac{8}{5}\)
\(\Rightarrow CE=\dfrac{56}{5}\left(cm\right)\);\(EA=\dfrac{24}{5}\)
b)TT\(\Rightarrow\dfrac{BD}{DC}=\dfrac{AB}{AC}\)
\(\Rightarrow\dfrac{BD}{DC}=\dfrac{3}{5}\)
\(\Rightarrow\dfrac{BD}{3}=\dfrac{DC}{5}=\dfrac{DC-DB}{5-3}=2\)
\(\Rightarrow BD=6;DC=10\)
\(\Rightarrow BC=16\left(cm\right)\)
c)OA là đường p/g \(\Delta ABE\)
\(\Rightarrow\dfrac{OE}{OB}=\dfrac{AE}{AB}\)
Lại có AC=16 \(\Rightarrow AB=\dfrac{48}{5}\)
\(\Rightarrow\dfrac{OE}{OB}=\dfrac{AE}{AB}=\dfrac{\dfrac{24}{5}}{\dfrac{48}{5}}=\dfrac{1}{2}\)
d)\(\dfrac{AI}{IB}\cdot\dfrac{BD}{DC}\cdot\dfrac{EC}{EA}=1\)
\(\Leftrightarrow\dfrac{AC}{BC}\cdot\dfrac{AB}{AC}\cdot\dfrac{BC}{BA}=1\)(luôn đúng điều này có được từ các đường phân giác trong \(\Delta ABC\))
a. -△ABC có AD là phân giác \(\Rightarrow\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{16}{12}=\dfrac{4}{3}\)
b. -△ABC có DH//AC \(\Rightarrow\dfrac{DH}{AC}=\dfrac{BD}{BC}=\dfrac{BD}{BD+CD}\)
\(\Rightarrow\dfrac{DH}{12}=\dfrac{4}{4+3}\Rightarrow DH=\dfrac{12.4}{4+3}=\dfrac{48}{7}\left(cm\right)\)
B1): a): +)Ta có csc đường cao BD, CE cắt nhau tại I => BD vg góc vs AC; CE vg góc vs AB
+)Xét tg AEC và tg ADB, có: AEC=AHB=90( BD vg góc vs AC; CE vg góc vs AB )
BAC chung
Do đó: tg AEC ~ tg ADB ( gg)
=> AE/AD= AC/AB=> AE*AB=AD*AC (đpcm)
b) : Gợi ý hoi :)): Kẻ đcao AF xuống BC, sẽ đi qua điểm I; c/m ED//BC=> c/m đc tg AED~tg ABC theo trường hợp cgc, từ đó ta sẽ có đc 2 góc AED = ABC ( vì 2 tg trên ~ vs nhau )
A B C 5 5 6 M N
a, Vì BM là phân giác ^B nên : \(\frac{AB}{BC}=\frac{AM}{MC}\)( t/c )
\(\Rightarrow\frac{MC}{BC}=\frac{AM}{AB}\)( tỉ lệ thức )
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{MC}{BC}=\frac{AM}{AB}=\frac{MC+AM}{BC+AB}=\frac{5}{11}\)
\(\Rightarrow\frac{MC}{6}=\frac{5}{11}\Rightarrow MC=\frac{30}{11}\)cm
\(\Rightarrow\frac{AM}{5}=\frac{5}{11}\Rightarrow AM=\frac{25}{11}\)cm