\(\sqrt{x-3}+\sqrt{y-4}\) và x+y=8 .tìm gt lớn nhất của S

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2017

\(A=\sqrt{x-3}+\sqrt{y-4}\)

\(\le\sqrt{\left(1+1\right)\left(x-3+y-4\right)}=\sqrt{2.1}=\sqrt{2}\)

19 tháng 11 2017

áp dụng bđt bunyakovsky cho 2 bộ số (1;1) và (căn x;căn y) ta có: (1^2+1^2)((căn x)^2 +(căn y)^2)>=(1.căn x=1.căn y)^2

                                                                                              <=>2(x+y)>=(căn x+căn y)^2

                                                                                                <=>A=căn x+căn y<=căn(2(x+y))=căn(2.1)=căn 2

đẳng thức xảy ra <=> (căn x)/1=(căn y)/1 và x+y=1<=>x=y=1/2

vậy maxA=căn 2<=>x=y=1/2

17 tháng 12 2016

x+y=4 nên xảy ra các trường hợp là x=0,y=4 ; x=1,y=3 ; x=2,y=2 ; x=3,y=1 ; x=4,y=0

TH1: x=0,y=4

=>\(\sqrt{-1}\)+\(\sqrt{2}\)thì ko có chuyện đó

TH2: x=1,y=3

=>\(\sqrt{0}\)+\(\sqrt{1}\)bằng 1

TH3:x=2,y=2

=>\(\sqrt{1}\)+\(\sqrt{0}\)bằng 1

TH4:x=3,y=1 bằng 1 bạn tự  tính

TH5: x=4,y=0 thì cũng ko có chuyện đó

Vậy tổng S lớn nhất là 1.

k mình nhé hơi thủ công

Tại mình giải theo kiểu lớp 6 và ... bấm máy tính bạn ah

17 tháng 12 2016

\(\hept{\begin{cases}\sqrt{x-1}>=0\\\sqrt{y-2}>=0\end{cases}}\)

\(=>\hept{\begin{cases}x-1>=0\\y-2>=0\end{cases}}\)

\(=>\)Chỉ còn 2 trường hợp

TH1:\(\hept{\begin{cases}x=2\\y=2\end{cases}}\)

\(< =>S=\sqrt{2-1}+\sqrt{2-2}\)

\(< =>S=1\)

TH2:\(\hept{\begin{cases}x=1\\y=3\end{cases}}\)

\(=>S=\sqrt{1-1}+\sqrt{3-2}\)

\(=>S=1\)

Vậy GTLN của S=1, Khi x=2,y=2 hoặc x=1,y=3

17 tháng 11 2017

\(S=\sqrt{x-3}+\sqrt{y-4}\)

ĐK:\(x\ge 3;y\ge 4\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(S^2=\left(\sqrt{x-3}+\sqrt{y-4}\right)^2\)

\(\le\left(1+1\right)\left(x-3+y-4\right)\)

\(=2\left(x+y-7\right)=2\)

\(\Rightarrow S^2\le2\Rightarrow S\le\sqrt{2}\)

9 tháng 9 2017

Gọi \(A=\sqrt{x-3}+\sqrt{y-4}\)

Ta có : \(A^2=x-3+y-4=2\sqrt{\left(x-3\right)\left(y-4\right)}=x+y-7+2\sqrt{2\left(x-3\right)\left(y-4\right)}\)

\(=1+2\sqrt{\left(x-3\right)\left(y-4\right)}\)

Theo AM - GM ta có : \(2\sqrt{\left(x-3\right)\left(y-4\right)}\le x-3+y-4=x+y-7=8-7=1\)

\(\Rightarrow A^2\le1+1=2\Rightarrow A\le\sqrt{2}\)Có GTLN là \(\sqrt{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x-3=y-4\Leftrightarrow\hept{\begin{cases}x-y=-1\\x+y=8\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{7}{2}\\y=\frac{9}{2}\end{cases}}}\)

30 tháng 6 2020

\(P=\frac{3x-6\sqrt{x}+7}{2\sqrt{x}-2}+\frac{y-4\sqrt{x}+10}{\sqrt{y}-2}\)

\(=\frac{3\left(\sqrt{x}-1\right)}{2}+\frac{4}{2\left(\sqrt{x}-1\right)}+\left(\sqrt{y}-2\right)+\frac{6}{\sqrt{y-1}}\)

\(=\frac{3\left(\sqrt{x}-1\right)}{2}+\frac{3}{2\left(\sqrt{x}-1\right)}+\left(\sqrt{y}-2\right)+\frac{4}{\left(\sqrt{y}-2\right)}+\frac{4}{2\left(\sqrt{y}-2\right)}+\frac{1}{2\left(\sqrt{x}-1\right)}\)

\(\ge2.\sqrt{\frac{3}{2}.\frac{3}{2}}+2\sqrt{4}+\frac{\left(1+2\right)^2}{2\left(\sqrt{x}+\sqrt{y}-3\right)}\)

\(=3+4+\frac{3}{2}=\frac{17}{2}\)

Dấu "=" xảy ra <=> x = 4 và y = 16

1) Cho x > 1. Tìm GTNN của:   ​\(A=\frac{1+x^4}{x\left(x-1\right)\left(x+1\right)}\)2) Trong các cặp (x;y) thỏa mãn \(\frac{x^2-x+y^2-y}{x^2+y^2-1}\le0\). Tìm cặp có tổng x + 2y lớn nhất.3) Cho x thỏa mãn \(x^2+\left(3-x\right)^2\ge5\). Tìm GTNN của \(A=x^4+\left(3-x\right)^4+6x^2\left(3-x\right)^2\)4) Tìm GTNN của \(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)5) Cho x, y > 1....
Đọc tiếp

1) Cho x > 1. Tìm GTNN của:   ​\(A=\frac{1+x^4}{x\left(x-1\right)\left(x+1\right)}\)

2) Trong các cặp (x;y) thỏa mãn \(\frac{x^2-x+y^2-y}{x^2+y^2-1}\le0\). Tìm cặp có tổng x + 2y lớn nhất.

3) Cho x thỏa mãn \(x^2+\left(3-x\right)^2\ge5\). Tìm GTNN của \(A=x^4+\left(3-x\right)^4+6x^2\left(3-x\right)^2\)

4) Tìm GTNN của \(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)

5) Cho x, y > 1. Tìm GTNN của \(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)

6) Cho x, y, z > 0 thỏa mãn: \(xy^2z^2+x^2z+y=3z^2\). Tìm GTLN của \(P=\frac{z^4}{1+z^4\left(x^4+y^4\right)}\)

7) Cho a, b, c > 0. CMR:\(\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

8) Cho x>y>0. và \(x^5+y^5=x-y\). CMR: \(x^4+y^4<1\)

9) Cho \(1\le a,b,c\le2\). CMR: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\)

10) Cho \(x,y,z\ge0\)CMR: \(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\le\sqrt[3]{\frac{x+y}{2}}+\sqrt[3]{\frac{y+z}{2}}+\sqrt[3]{\frac{z+x}{2}}\)

11) Cho \(x,y\ge0\)thỏa mãn \(x^2+y^2=1\)CMR: \(\frac{1}{\sqrt{2}}\le x^3+y^3\le1\)

12) Cho a,b,c > 0 và a + b + c = 12. CM: \(\sqrt{3a+2\sqrt{a}+1}+\sqrt{3b+2\sqrt{b}+1}+\sqrt{3c+2\sqrt{c}+1}\le3\sqrt{17}\)

13) Cho x,y,z < 0 thỏa mãn \(x+y+z\le\frac{3}{2}\). CMR: \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge3\sqrt{17}\)

14) Cho a,b > 0. CMR: \(\left(\sqrt[6]{a}+\sqrt[6]{b}\right)\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\le4\left(a+b\right)\)

15) Với a, b, c > 0. CMR: \(\frac{a^8+b^8+c^8}{a^3.b^3.c^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

16) Cho x, y, z > 0 và \(x^3+y^3+z^3=1\)CMR: \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2\)

3
20 tháng 1 2016

cậu đăng mỗi lần 1 đến 2 câu thôi chứ nhiều thế này ai làm cho hết được

20 tháng 1 2016

Ok lần đầu mình đăng nên chưa biết, cảm ơn cậu đã góp ý, mình sẽ rút kinh nghiệm!!