Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{775}+\frac{1}{1147}\)
\(=\frac{1}{1\cdot7}+\frac{1}{7\cdot13}+\frac{1}{13\cdot19}+...+\frac{1}{31\cdot37}\)
\(=\frac{1}{6}\left(\frac{6}{1\cdot7}+\frac{6}{7\cdot13}+\frac{6}{13\cdot19}+...+\frac{6}{31\cdot37}\right)\)
\(=\frac{1}{6}\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+...-\frac{1}{31}-\frac{1}{37}\right)\)
\(=\frac{1}{6}\left(1-\frac{1}{37}\right)\)
\(=\frac{1}{6}\cdot\frac{36}{37}=\frac{6}{37}\)
Tổng cần tính bằng:\(\frac{1}{1.7}\)+\(\frac{1}{7.13}\)+\(\frac{1}{13.19}\)+\(\frac{1}{19.25}\)+\(\frac{1}{25.31}\)+\(\frac{1}{31.37}\)=(\(\frac{1}{1}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)-\(\frac{1}{13}\)+...+\(\frac{1}{31}\)\(\frac{1}{37}\)):3 =(\(1\)-\(\frac{1}{37}\)):3=\(\frac{12}{37}\)
A=1/7 +1/91 +1/247 + 1/475 + 1/775 + 1/1147
A=1/(1.7)+1/(7.13)+1/(13.19)+...+1/(31...
A=(1/6)*( 1 - 1/7 + 1/7 - 1/13 +... +1/31-1/37)
A=(1/6)*(1-1/37)
A=(1/6)*(36/37)
A=6/37
a, 1+6+11+16+...+46+51
Số số hạng là : (51-1):5+1 = 11 ( số )
Tổng là : (51+1).11:2=286
b, Đặt A = \(\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+\dfrac{5^2}{11.16}+\dfrac{5^2}{16.21}+\dfrac{5^2}{21.26}+\dfrac{5^2}{26.31 } \)
\(\dfrac{1}{5}A=\) \(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+\dfrac{5}{16.21}+\dfrac{5}{21.26}+\dfrac{5}{26.31}\)
\(\dfrac{1}{5}A=\) \(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{31}\)
\(\dfrac{1}{5}A=1-\dfrac{1}{31}\)
\(\dfrac{1}{5}A=\dfrac{30}{31}\)
\(A=\dfrac{30}{31}:\dfrac{1}{5}=\dfrac{150}{31}\)
Vậy..
Sao nhiều quá vại??
mk lm k nổi đâu
Dài quá nhìn lòi bảng họng lun ak
Bài : 4
a/ \(\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+....+\frac{1}{24\cdot25}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+....+\frac{1}{24}-\frac{1}{25}\)
\(=\frac{1}{5}-\frac{1}{25}\)
\(=\frac{4}{25}\)
b/ \(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+....+\frac{2}{99\cdot101}\)
\(=\frac{3-1}{1\cdot3}+\frac{5-3}{3\cdot5}+\frac{7-5}{5\cdot7}+...+\frac{101-99}{99\cdot101}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{1}-\frac{1}{101}\)
\(=\frac{100}{101}\)
c/ \(\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+\frac{5^2}{11\cdot16}+\frac{5^2}{16\cdot21}+\frac{5^2}{21\cdot26}+\frac{5^2}{26\cdot31}\)
\(=\frac{25}{1\cdot6}+\frac{25}{6\cdot11}+\frac{25}{11\cdot16}+\frac{25}{16\cdot21}+\frac{25}{21\cdot26}+\frac{25}{26\cdot31}\)
\(=\frac{6-1}{1\cdot6}+\frac{11-6}{6\cdot11}+....+\frac{31-26}{26\cdot31}\)
\(=\frac{25}{5}\cdot\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{26}-\frac{1}{31}\right)\)
\(=\frac{25}{5}\cdot\left(\frac{1}{1}-\frac{1}{31}\right)\)
\(=\frac{25}{5}\cdot\frac{30}{31}\)
\(=\frac{150}{31}\)
d/ \(\frac{3}{1\cdot3}+\frac{3}{3\cdot5}+\frac{3}{5\cdot7}+....+\frac{3}{49\cdot51}\)
\(=\frac{3-1}{1\cdot3}+\frac{5-3}{3\cdot5}+\frac{7-5}{5\cdot7}+....+\frac{51-49}{49\cdot51}\)
\(=\frac{3}{2}\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{3}{2}\cdot\left(\frac{1}{1}-\frac{1}{51}\right)\)
\(=\frac{3}{2}\cdot\frac{50}{51}\)
\(=\frac{25}{17}\)
e/ \(\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{775}+\frac{1}{1147}\)
\(=\frac{1}{1\cdot7}+\frac{1}{7\cdot13}+\frac{1}{13\cdot19}+\frac{1}{19\cdot25}+\frac{1}{25\cdot31}+\frac{1}{31\cdot37}\)
\(=\frac{7-1}{1\cdot7}+\frac{13-7}{7\cdot13}+....+\frac{37-31}{31\cdot37}\)
\(=\frac{1}{6}\cdot\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+....+\frac{1}{31}-\frac{1}{37}\right)\)
\(=\frac{1}{6}\cdot\left(1-\frac{1}{37}\right)\)
\(=\frac{1}{6}\cdot\frac{36}{37}\)
\(=\frac{6}{37}\)
\(B=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right)...\left(1-\frac{1}{10000}\right)\)
\(=\left(\frac{4}{4}-\frac{1}{4}\right).\left(\frac{9}{9}-\frac{1}{9}\right)...\left(\frac{10000}{10000}-\frac{1}{10000}\right)\)
\(=\frac{3}{4}.\frac{8}{9}...\frac{9999}{10000}=\frac{3}{2.2}.\frac{2.4}{3.3}...\frac{99.101}{100.100}\)
\(=\frac{101}{100}\)
\(D=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\)
\(=5.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\right)\)
\(=5.\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5.\left(\frac{1}{1}-\frac{1}{31}\right)=5.\left(\frac{31}{31}-\frac{1}{31}\right)=5.\frac{30}{31}=\frac{150}{31}\)
C=\(\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{775}+\frac{1}{1147}\)
C=\(\frac{1}{6}\left\{\frac{6}{1.7}+\frac{6}{7.13}+\frac{6}{13.19}+...+\frac{6}{31.37}\right\}\)=\(\frac{1}{6}\left(1-\frac{1}{7}+\frac{1}{7}+....+\frac{1}{31}-\frac{1}{37}\right)\)
C=\(\frac{1}{6}\left(1-\frac{1}{37}\right)=\frac{1}{6}.\frac{36}{37}=\frac{36}{222}=\frac{6}{37}\)
D=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+......+\frac{3}{49.51}\)
D=\(\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{49.51}\right)\)
D=\(\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
D=\(\frac{3}{2}\left(1-\frac{1}{51}\right)=\frac{3}{2}.\frac{50}{51}\)
D=\(\frac{150}{102}\)=\(\frac{25}{17}\)
\(S=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{26.31}\)
\(S=5.\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)
\(S=5.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(S=5.\left(1-\frac{1}{31}\right)\)
\(S=5.\frac{30}{31}\)
\(S=\frac{150}{31}\)
Câu L bạn thiếu số\(\frac{1}{475}\)
\(L=\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{775}+\frac{1}{1147}\)
\(L=\frac{1}{1.7}+\frac{1}{7.13}+\frac{1}{13.19}+\frac{1}{19.25}+\frac{1}{25.31}+\frac{1}{31.37}\)
\(L=\frac{1}{6}.\left(\frac{6}{1.7}+\frac{6}{7.13}+\frac{6}{13.19}+\frac{6}{19.25}+\frac{6}{25.31}+\frac{6}{31.37}\right)\)
\(L=\frac{1}{6}.\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+\frac{1}{19}-\frac{1}{25}+\frac{1}{25}-\frac{1}{31}+\frac{1}{31}-\frac{1}{37}\right)\)
\(L=\frac{1}{6}.\left(1-\frac{1}{37}\right)\)
\(L=\frac{1}{6}.\frac{36}{37}\)
\(L=\frac{6}{37}\)
\(S=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{26.31}\)
\(=5\left[\left(1-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{11}\right)+...+\left(\frac{1}{26}-\frac{1}{31}\right)\right]\)
\(=5\left[1-\frac{1}{31}\right]\)
\(=5.\frac{30}{31}=\frac{150}{31}\)
\(L=\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{775}+\frac{1}{1147}\)
\(L.6=\frac{6}{1.7}+\frac{6}{7.13}+\frac{6}{13.19}+\frac{6}{19.25}+\frac{6}{25.31}\)
\(L.6=\left(1-\frac{1}{7}\right)+\left(\frac{1}{7}-\frac{1}{13}\right)+\left(\frac{1}{13}-\frac{1}{19}\right)+\left(\frac{1}{19}-\frac{1}{25}\right)+\left(\frac{1}{25}-\frac{1}{31}\right)\)
\(L.6=1-\frac{1}{31}\)
\(L.6=\frac{31}{31}-\frac{1}{31}\)
\(L.6=\frac{25}{31}\)
\(L=\frac{30}{31}:6\)
\(L=\frac{30}{31}.\frac{1}{6}\)
\(L=\frac{30}{186}\)