K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2020

Ta có : 

\(S=\left(1+\frac{1}{3}+..+\frac{1}{2011}+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1006}\right)\)

\(=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2013}=P\)

\(\Rightarrow\left(s-p\right)^{2013}=0^{2013}=0\)

15 tháng 3 2020

Thanks bạn nhiều nhé!! Tặng bạn 1 tk :>