Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có pt hoành độ giao điểm: \(2x^2=x+1\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-1}{2}\end{matrix}\right.\)
tại x= 1 thì ta có tọa độ giao điểm A(1;2)
tại x=\(\dfrac{-1}{2}\) thì ta có tọa độ giao điểm B(\(\dfrac{-1}{2};\dfrac{1}{2}\))
còn câu b) để từ từ mình suy nghĩ rồi giải sau
mình làm ra được câu b rồi
ta có pt hđgđ
\(2x^2=2mx-m-2x+2\)
\(\Leftrightarrow2x^2-\left(2m-2\right)x+\left(m-2\right)=0 \)
\(\Delta=m^2-4m+5>0\)
\(\Rightarrow X_A=\dfrac{m-1-\sqrt{m^2-4m+5}}{2};X_B=\dfrac{m-1+\sqrt{m^2-4m+5}}{2}\)
\(\Rightarrow Y_A=2\left(\dfrac{m-1-\sqrt{m^2-4m+5}}{2}\right)^2;Y_B=2\left(\dfrac{m-1+\sqrt{m^2-4m+5}}{2}\right)^2\)
Bài 2:
Gọi (d): y=ax+b là phương trình đường thẳng cần tìm
Vì (d)//y=-x+2 nên a=-1
Vậy: y=-x+b
Thay x=1 vào (P), ta được:
\(y=1^2=1\)
Thay x=1 và y=1 vào y=-x+b, ta được:
b-1=1
hay b=2
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}\dfrac{1}{4}x^2+\dfrac{1}{2}x-2=0\\y=\dfrac{1}{4}x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+2x-8=0\\y=\dfrac{1}{4}x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{-4;2\right\}\\y\in\left\{4;1\right\}\end{matrix}\right.\)
a: Tọa độ A là:
\(\left\{{}\begin{matrix}-x+5=\dfrac{1}{4}x\\y=\dfrac{1}{4}x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{5}{4}x=-5\\y=\dfrac{1}{4}x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=1\end{matrix}\right.\)
Tọa độ B là:
-x+5=4x và y=4x
=>-5x=-5 và y=4x
=>B(1;4)
Tọa độ C là:
1/4x=4x và y=4x
=>C(0;0)
b: A(4;1); B(1;4); O(0;0)
\(OA=\sqrt{4^2+1^2}=\sqrt{17}\)
\(OB=\sqrt{4^2+1^2}=\sqrt{17}\)
=>OA=OB
=>ΔOAB cân tại O
a, bạn tự vẽ
b, Hoành độ giao điểm tm pt
\(\dfrac{x^2}{2}=\dfrac{x}{2}+3\Leftrightarrow x^2-x-6=0\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow x=3;x=-2\)
hay \(x_A=3;x_B=-2\)
\(\Rightarrow y_A=\dfrac{9}{2};y_B=2\)
Vậy (P) cắt (d) tại A(3;9/2) ; B(-2;2)
c, Ta có \(AB=\sqrt{\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2}=\dfrac{5\sqrt{5}}{2}\)
Theo Pytago ta có \(OA=\sqrt{\left(\dfrac{9}{2}\right)^2+3^2}=\dfrac{3\sqrt{13}}{2}\)
Theo Pytago ta có \(OB=\sqrt{2^2+2^2}=2\sqrt{2}\)
Chu vi tam giác ABC là
\(AB+OA+OB=\dfrac{5\sqrt{5}+3\sqrt{13}+4\sqrt{2}}{2}\)