Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(Q=\left(\frac{\sqrt{x}}{1-\sqrt{x}}+\frac{\sqrt{x}}{1+\sqrt{x}}\right)+\frac{3-\sqrt{x}}{x-1}\left(x\ge0;x\ne1\right)\)
\(=-\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-x-\sqrt{x}+x-\sqrt{x}+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=-\frac{3}{\sqrt{x}+1}\)
b) Để \(Q=-1\)
\(\Leftrightarrow-\frac{3}{\sqrt{x}+1}=-1\)
\(\Leftrightarrow\sqrt{x}+1=3\)
\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
\(P=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{x-3\sqrt{x}+2}\)
ĐK : \(\hept{\begin{cases}x\ge0\\x\ne1\\x\ne4\end{cases}}\)
\(=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{x-\sqrt{x}-2\sqrt{x}+2}\)
\(=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}-\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}+\frac{x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}-\frac{2x-5\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}+\frac{x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2+x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\frac{1}{\sqrt{x}-2}\)
b) Để P < 1
=> \(\frac{1}{\sqrt{x}-2}< 1\)
<=> \(\frac{1}{\sqrt{x}-2}-1< 0\)
<=> \(\frac{1}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}-2}< 0\)
<=> \(\frac{1-\sqrt{x}+2}{\sqrt{x}-2}< 0\)
<=> \(\frac{3-\sqrt{x}}{\sqrt{x}-2}< 0\)
Xét hai trường hợp :
1. \(\hept{\begin{cases}3-\sqrt{x}>0\\\sqrt{x}-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-\sqrt{x}>-3\\\sqrt{x}< 2\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}< 3\\\sqrt{x}< 2\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 9\\x< 4\end{cases}}\Leftrightarrow x< 4\)
2. \(\hept{\begin{cases}3-\sqrt{x}< 0\\\sqrt{x}-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-\sqrt{x}< -3\\\sqrt{x}>2\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}>3\\\sqrt{x}>2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>9\\x>4\end{cases}}\Leftrightarrow x>9\)
Kết hợp với ĐK => Với \(\orbr{\begin{cases}x\in\left\{0;2;3\right\}\\x>9\end{cases}}\)thì thỏa mãn đề bài
Đề bài này be bét quá, xin phép sửa lại
a) đk: \(\hept{\begin{cases}x\ge0\\x\ne\left\{1;4\right\}\end{cases}}\)
\(P=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{x-3\sqrt{x}+2}\)
\(P=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(P=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(P=\frac{x-4\sqrt{x}+3-2x+3\sqrt{x}-2+x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(P=\frac{-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
b) Ta có: \(P< 1\)
\(\Leftrightarrow-\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}< 0\)
Mà \(\sqrt{x}+1\ge1>0\left(\forall x\right)\)
\(\Rightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1< 0\\\sqrt{x}-2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}0\le x< 1\\x>4\end{cases}}\)
\(A=\)\(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\)
\(=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\) \(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) \(-\frac{\sqrt{x}+x+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+x+1\right)}\)
\(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
= \(\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}+x+1}\)
học tốt
\(A=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\)
\(A=\frac{x+2}{\sqrt{x}^3-1^3}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{-1\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(A=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(A=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(A=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
Ta có : x + 1 \(\ge\)\(2\sqrt{x}\)nên \(x+\sqrt{x}+1\ge3\sqrt{x}\)
\(\Rightarrow A=\frac{\sqrt{x}}{x+\sqrt{x}+1}\le\frac{\sqrt{x}}{3\sqrt{x}}=\frac{1}{3}\)
Vậy GTLN của A là \(\frac{1}{3}\)\(\Leftrightarrow x=1\)
a/ Ta có: \(x+2\sqrt{x}+1=\left(\sqrt{x}+1\right)^2\)
Và: \(x-1=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)
=> \(P=\left[\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right].\frac{\sqrt{x}+1}{\sqrt{x}}\)
=> \(P=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
=> \(P=\frac{x+2\sqrt{x}-\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)}.\frac{1}{\sqrt{x}}=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)}.\frac{1}{\sqrt{x}}\)
=> \(P=\frac{2}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)}=\frac{2}{x-1}\)
b/ Thay \(x=\frac{\sqrt{3}}{2+\sqrt{3}}\) => \(P=\frac{2}{\frac{\sqrt{3}}{2+\sqrt{3}}-1}=\frac{2\left(2+\sqrt{3}\right)}{\sqrt{3}-2-\sqrt{3}}\)
=> \(P=-\left(2+\sqrt{3}\right)\)
c/ \(P=\frac{2}{x-1}=-\frac{4}{\sqrt{x}+1}\) <=> \(\frac{1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=-\frac{2}{\sqrt{x}+1}\)
<=> \(\frac{1}{\sqrt{x}-1}=-2\)
<=> \(1=-2\sqrt{x}+2\)
<=> \(2\sqrt{x}=1=>\sqrt{x}=\frac{1}{2}=>x=\frac{1}{4}\)
\(P=\left(\frac{x\sqrt{x}}{x\sqrt{x}-1}+\frac{\sqrt{x}}{1-\sqrt{x}}\right):\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
a) \(P=\left[\frac{x\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{x\sqrt{x}-1}\right]:\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(P=\left[\frac{x\sqrt{x}}{x\sqrt{x}-1}-\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}\right]:\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(P=\frac{x\sqrt{x}-x\sqrt{x}-x-\sqrt{x}}{x\sqrt{x}-1}.\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\)
\(P=\frac{-x-\sqrt{x}}{\sqrt{x}-1}.\frac{1}{\sqrt{x}+1}\)
\(P=\frac{-\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}-1}.\frac{1}{\sqrt{x}+1}\)
\(P=\frac{-\sqrt{x}}{\sqrt{x}-1}\)
vậy \(P=-\frac{\sqrt{x}}{\sqrt{x}-1}\) với \(x\ge0;x\ne1\)
b) để \(P>1\Leftrightarrow\frac{-\sqrt{x}}{\sqrt{x}-1}>1\)
\(\Leftrightarrow\frac{-\sqrt{x}}{\sqrt{x}-1}-1>0\)
\(\Leftrightarrow\frac{-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\frac{-\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\frac{-2\sqrt{x}+1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\hept{\begin{cases}-2\sqrt{x}+1>0\\\sqrt{x}-1>0\end{cases}}\) hoặc \(\hept{\begin{cases}-2\sqrt{x}+1< 0\\\sqrt{x}-1< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}< \frac{1}{2}\\\sqrt{x}>1\end{cases}}\) hoặc \(\hept{\begin{cases}\sqrt{x}>\frac{1}{2}\\\sqrt{x}< 1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< \frac{1}{4}\\x>1\end{cases}\left(loai\right)}\) hoặc \(\hept{\begin{cases}x>\frac{1}{4}\\x< 1\end{cases}}\)
\(\Rightarrow\frac{1}{4}< x< 1\)
kết hợp với \(ĐKXĐ:x\ge0;x\ne1\) thì ta có \(\frac{1}{4}< x< 1\)
\(ĐKXĐ:x\ne1;x\ge0\)
\(P=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{x-1}\)
\(P=\frac{x+2+\sqrt{x}+1\left(x-1\right)-\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}{\left(x+\sqrt{x}+1\right)\left(x-1\right)}\)
\(P=\frac{x+2+x\sqrt{x}+x-\sqrt{x}-1-x\sqrt{x}-x-x-\sqrt{x}-\sqrt{x}-1}{\left(x+\sqrt{x}+1\right)\left(x-1\right)}\)
\(P=\frac{-3\sqrt{x}}{x\sqrt{x}-1}\)