Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp
Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.
a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp
b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN
Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.
a) C/m: MOCD là hình bình hành
b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.
Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).
a) C/m: MI là tiếp tuyến của (O)
b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.
Lời giải:
1.
Vì $BC\equiv d$ là tiếp tuyến của $(O)$ nên $OH\perp BC$
$\Rightarrow \triangle BHO$ vuông tại $H$ và tam giác $CHO$ vuông tại $H$
Tam giác $HBO$ vuông có đường cao $HM$ nên áp dụng hệ thức lượng trong tam giác vuông có $HO^2=OM.OB(1)$
Hoàn toàn tương tự, với tam giác vuông $CHO$ có đường cao $HN$ có: $HO^2=ON.OC(2)$
Từ $(1);(2)\Rightarrow OM.OB=ON.OC$ (đpcm)
------------
Vì $OM.OB=HO^2=OA^2\Rightarrow \frac{OM}{OA}=\frac{OA}{OB}$
$\Rightarrow \triangle MOA\sim \triangle AOB$ (c.g.c)
$\Rightarrow \widehat{MAO}=\widehat{ABO}=\widehat{AOB}=\widehat{AOM}$ (do $AB=AO$)
$\Rightarrow \triangle AMO$ cân tại $M$
$\Rightarrow AM=OM$
Hoàn toàn tương tự: $NA=NO$
Do đó $MN$ là đường trung trực của $AO$ nên $MN$ luôn đi qua trung điểm của $AO$. $A,O$ cố định nên trung điểm của nó $I$ cũng cố định. Vậy $MN$ luôn đi qua điểm cố định (đpcm)
2.
Vì $OM.OB=ON.OC$ nên $\triangle OMN\sim \triangle OCB$ (c.g.c)
$\Rightarrow \widehat{OMN}=\widehat{OCB}$ hay $\widehat{OMI}=\widehat{OCH}$
$\Rightarrow \triangle OMI\sim \triangle OCH$ (g.g)
$\Rightarrow \frac{OM}{OC}=\frac{OI}{OH}=\frac{OA}{2OH}=\frac{1}{2}$
$\Rightarrow 2OM=OC$
$\Rightarrow OB.OC=2OM.OB=2.OH^2=2R^2$ (đpcm)
Hình vẽ: