Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2-2\left(\frac{1}{n}-\frac{1}{n\left(n+1\right)}-\frac{1}{n+1}\right)}\)
=1+1/n-1/n+1
chúc bn hoc tốt
\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=1+\frac{1}{n}-\frac{1}{n+1}\)
\(\Rightarrow\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}=\frac{[\left(n+1\right)^2-n]^2}{n^2\left(n+1\right)^2}\)
\(\Rightarrow\left(n+1\right)^4+n^2=\left(n+1\right)^4-2\left(n+1\right)^2n+n^2\)
\(\Rightarrow0=-2\left(n+1\right)^2n\)
\(\Rightarrow\orbr{\begin{cases}\left(n+1\right)^2=0\\n=0\end{cases}}\Rightarrow\orbr{\begin{cases}n=-1\\n=0\end{cases}}\) mà \(n\inℕ^∗\)
=> n\(\in\varnothing\)
sử dụng phương pháp quy nạp
*với n=1 thì 2 chia hết cho2
*với n=2 thì 3*4=12 chia hết cho 4
thử đúng đến n=k cần cm n=k+
ta có (k+1)(k+2)(k+3).....(k+k-1)(k+k)chia hết cho 2k
n=k+1 biểu thức có dạng (k+1+1)(k+1+2)....(k+1+k)(k+1+k+1)
=2(k+1)(k+2)(k+3)....(k+k-1)(k+k)(k+k+1)chia hết cho2k*2=2k+1
Với \(n=1\) thì đề sai, mà hình như với số nào đề cũng sai...