Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp:
Xét tính đúng sai của các đáp án dựa vào các kiến thức hàm số đồng biến, nghịch biến trên khoảng xác định.
Cách giải:
*2 sai vì với c 1 < c 2 bất kỳ nằm trong a ; b ta chưa thể so sánh được f c 1 và f c 2
*3 sai. Vì y' bằng 0 tại điểm đó thì chưa chắc đã đổi dấu qua điểm đó. VD hàm số y = x 3
*4 sai: Vì thiếu điều kiện tại f ' x = 0 hữu hạn điểm.VD hàm số y = 1999 có y ' = 0 ≥ 0 nhưng là hàm hằng.
Chú ý khi giải:
HS thường nhầm lẫn:
- Khẳng định số 4 vì không chú ý đến điều kiện bằng 0 tại hữu hạn điểm.
- Khẳng định số 3 vì không chú ý đến điều kiện đổi dấu qua nghiệm.
Đáp án là C
I.Sai ví dụ hàm số y = x 3 đồng biến trên
(−¥; +¥) nhưng y' ³ 0, "x Î (−¥; +¥)
II.Đúng
III.Đúng
Đáp án D
Ta có: Hàm số luôn đồng biến trên
ℝ ⇔ y ' = 3 a x 2 + 2 b x + c ≥ 0 ∀ x ∈ ℝ ⇔ a > 0 Δ y ' = b 2 − 3 a c ≤ 0
Đáp án B
Ta có g ' x = 2 x . f ' x 2 = 2 x . x 4 x 2 − 9 x 2 − 4 2
Suy ra g ' x đổi dấu khi đi qua 3 điểm x = 0 ; x = ± 3 ⇒ hàm số y = g x có 3 điểm cực trị
Mặt khác g ' x > 0 ⇔ − 3 < x < 0 x > 3 nên hàm số y = g x đồng biến trên khoảng − ∞ ; − 3 và − 3 ; 0
Hàm số y = g x nghịch biến trên khoảng − ∞ ; − 3 và 0 ; 3
Do x = 9 không phải điểm tới hạn của hàm số y = g x nên khẳng định 4 sai
Đáp án C