K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 1 2024

Do đề ko thấy yêu cầu gì là 2 số phân biệt nên làm theo hướng đó.

Không gian mẫu: \(12^2=144\)

Chọn số nguyên tố chẵn: có đúng 1 cách là chọn số 2

Chọn số nguyên tố lẻ nhỏ hơn 13: có 4 cách (3,5,7,11)

\(\Rightarrow2.4.2!=16\) cách

Xác suất: \(P=\dfrac{16}{144}=...\)

Có hai chữ số nhỏ hơn mấy bạn ơi?

a: Số cách viết ngẫu nhiên một số tự nhiên có 2 chữ số là:

99-10+1=90(số)

b: Số số chẵn có 2 chữ số là: \(\dfrac{98-10}{2}+1=\dfrac{88}{2}+1=45\left(số\right)\)

=>Xác suất viết được một số chẵn là \(\dfrac{45}{90}=\dfrac{1}{2}\)

Số số tròn chục có 2 chữ số là: \(\dfrac{90-10}{10}+1=9\left(số\right)\)

=>Xác suất viết ra được một số tròn chục là \(\dfrac{9}{90}=\dfrac{1}{10}\)

Các số có 2 chữ số mà là bình phương của một số tự nhiên là 16;25;36;49;64;81

=>Có 6 số

=>Xác suất viết được là 6/90=1/15

HQ
Hà Quang Minh
Giáo viên
15 tháng 9 2023

Đáp án đúng là C

Các thẻ được đánh số nguyên tối là thẻ số 5; thẻ số 7; thẻ số 11; thẻ số 13.

Xác suất để thẻ chọn ra ghi số nguyên tố là \(\frac{4}{{10}} = \frac{2}{5} = 0,4\).

HQ
Hà Quang Minh
Giáo viên
15 tháng 9 2023

- Các tấm thẻ được đánh số chẵn là: thẻ số 2; thẻ số 8; thẻ số 32.

Xác suất để biến cố \(A\) xảy ra là \(\frac{3}{6} = \frac{1}{2}\)

- Các tấm thẻ được đánh số nguyên tố là: thẻ số 2; thẻ số 3; thẻ số 5; thể số 13.

Xác suất để biến cố \(B\) xảy ra là \(\frac{4}{6} = \frac{2}{3}\)

- Không có tấm thẻ nào được đánh số chính phương.

Do đó, xác suất để biến cố \(C\) xảy ra bằng 0.

HQ
Hà Quang Minh
Giáo viên
15 tháng 9 2023

Gọi số thẻ ghi số lẻ trong hộp là \(n\). Khi đó, xác suất tấm thẻ lấy ra ghi số lẻ là \(\frac{n}{{10}}\).

Số thẻ ghi số chẵn trong hộp là \(10 - n\). Khi đó, xác suất tấm thẻ lấy ra ghi số chẵn là \(\frac{{10 - n}}{{10}}\).

Vì xác suất lấy được thẻ chẵn gấp 4 lần xác suất lấy được thẻ lẻ nên \(\frac{{10 - n}}{{10}} = 4.\frac{n}{{10}} \Leftrightarrow 10 - n = 4n \Leftrightarrow 5n = 10 \Leftrightarrow n = 2\)

Vậy số thẻ ghi số lẻ trong hộp là 2 thẻ.

TH1: Cả 2 thẻ đều là số lẻ 

Số số lẻ trong khoảng từ 16 đến 42 là:

\(\dfrac{41-17}{2}+1=\dfrac{24}{2}+1=13\left(số\right)\)

=>Số cách chọn là \(C^2_{13}=78\left(cách\right)\)

TH2: Cả 2 thẻ đều chẵn

Số số chẵn trong khoảng từ 16 đến 42 là:

\(\dfrac{42-16}{2}+1=\dfrac{26}{2}+1=14\left(số\right)\)

=>Số cách chọn là \(C^2_{14}=91\left(cách\right)\)

Số cách chọn 2 thẻ bất kỳ trong 27 thẻ là: \(C^2_{27}=351\left(cách\right)\)

Xác suất để tổng của hai thẻ là số chẵn là:

\(\dfrac{91+78}{351}=\dfrac{169}{351}\)

HQ
Hà Quang Minh
Giáo viên
15 tháng 9 2023

Vì 5 quả bóng có kích thước và khối lượng giống nhau nên 5 kết quả của phép thử có khả năng xảy ra bằng nhau.

- Biến cố \(A\) xảy ra khi ta lấy được quả bóng có số 5 hoặc 13 nên có 2 kết quả thuận lợi cho \(A\). Xác suất của biến có \(A\) là:

\(P\left( A \right) = \frac{2}{5}\).

- Vì không có quả bóng nào đánh số chia hết cho 3 nên số kết quả thuận lợi của biến cố \(B\) là 0. Xác suất của biến cố \(B\) là

\(P\left( B \right) = \frac{0}{5} = 0\).

- Vì cả 5 quả bóng đều đánh số lớn hơn 4 nên số kết quả thuận lợi của biến cố \(C\) là 5. Xác suất của biến cố \(C\) là

\(P\left( C \right) = \frac{5}{5} = 1\).