K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2019

Xét \(\Delta MNPcó:\)

MN>MP(gt)

\(\Rightarrow\widehat{MPN}>\widehat{MNP}\)(quan hệ giữa cạnh và góc đối diện )(1)

Ta có : \(\widehat{MPN}+\widehat{EPN}=180^0\)(2 góc kề bù )

\(\widehat{MPN}< 90^0\)(gt)

\(\Rightarrow\widehat{EPN}>90^0>\widehat{MPN}\)(2)

Từ (1) và (2) suy ra : \(\widehat{EPN}>\widehat{MNP}\)

\(\widehat{EPN}=\widehat{DFN}\left(\Delta PDE=\Delta FDN\right)\)

\(\Rightarrow\widehat{PNM}< \widehat{DFN}\)

Xét \(\Delta DFNcó:\)

\(\widehat{DNP}< \widehat{DFN}\left(cmt\right)\)

\(\Rightarrow DF< DN\)(tc quan hệ giữa cạnh và góc đối diện)

mà DP=DF(do \(\Delta PDE=\Delta FDN\))

\(\Rightarrow\)DP<DN(đpcm)

25 tháng 6 2019

khó nhể

a: ND=DP=10/2=5cm

Xét ΔDMN có DE là phân giác

nên ME/EN=MD/DN=4/5

Xét ΔMDP có DF là phân giác

nên MF/FP=MD/DP=4/5

b: Xét ΔMNP có ME/EN=MF/FP

nên EF//NP

c: Xét ΔMKF và ΔMDP có

góc MKF=góc MDP

góc KMF chung

=>ΔMKF đồng dạng với ΔMDP

d: Xét ΔMND có EK//ND

nên EK/ND=MK/MD

Xét ΔMDP cóa KF//DP

nên KF/DP=MK/MD

=>EK/ND=KF/DP

=>EK=KF

=>K là trung điểm của EF

a: ND=DP=10/2=5cm

Xét ΔDMN có DE là phân giác

nên ME/EN=MD/DN=4/5

Xét ΔMDP có DF là phân giác

nên MF/FP=MD/DP=4/5

b: Xét ΔMNP có ME/EN=MF/FP

nên EF//NP

c: Xét ΔMKF và ΔMDP có

góc MKF=góc MDP

góc KMF chung

=>ΔMKF đồng dạng với ΔMDP

d: Xét ΔMND có EK//ND

nên EK/ND=MK/MD

Xét ΔMDP cóa KF//DP

nên KF/DP=MK/MD

=>EK/ND=KF/DP

=>EK=KF

=>K là trung điểm của EF

13 tháng 8
Các bước giải:
  1. Sử dụng định lý Thales cho các đường thẳng song song:
    • Vì \(D F\) song song với \(N P\) (\(D F \parallel N P\)) và \(F\) thuộc \(M P\)\(D\) thuộc \(M N\), ta có tam giác \(M D F\) đồng dạng với tam giác \(M N P\).
    • Từ đó, theo định lý Thales, ta có tỉ lệ:\(\frac{M D}{M N} = \frac{M F}{M P} = \frac{D F}{N P}\)
    • Tương tự, vì \(E G\) song song với \(N P\) (\(E G \parallel N P\)) và \(G\) thuộc \(M P\)\(E\) thuộc \(M N\), ta có tam giác \(M E G\) đồng dạng với tam giác \(M N P\).
    • Từ đó, theo định lý Thales, ta có tỉ lệ:\(\frac{M E}{M N} = \frac{M G}{M P} = \frac{E G}{N P}\)
  2. Sử dụng giả thiết \(M D = N E\):
    • Ta có \(M N = M D + D E + E N\).
    • Thay \(N E = M D\) vào, ta có \(M N = M D + D E + M D = 2 M D + D E\).
    • Từ đó suy ra \(D E = M N - 2 M D\).
    • Cũng từ \(M N = 2 M D + D E\), ta có \(M D = \frac{M N - D E}{2}\).
    • Và \(N E = \frac{M N - D E}{2}\).
  3. Xét tỉ lệ của các đoạn thẳng:
    • Từ \(\frac{M D}{M N} = \frac{D F}{N P}\), ta có \(D F = N P \cdot \frac{M D}{M N}\).
    • Từ \(\frac{M E}{M N} = \frac{E G}{N P}\), ta có \(E G = N P \cdot \frac{M E}{M N}\).
  4. Sử dụng giả thiết \(G I \parallel M N\):
    • Vì \(G I \parallel M N\) và \(I\) thuộc \(N P\)\(G\) thuộc \(M P\), ta có tam giác \(P G I\) đồng dạng với tam giác \(P N M\).
    • Từ đó, theo định lý Thales, ta có tỉ lệ:\(\frac{P G}{P M} = \frac{P I}{P N} = \frac{G I}{M N}\)
  5. Liên hệ các đoạn thẳng \(D F\)  \(I P\):
    • Chúng ta cần chứng minh \(D F = I P\).
    • Từ \(D F = N P \cdot \frac{M D}{M N}\), ta cần chứng minh \(I P = N P \cdot \frac{M D}{M N}\).
    • Điều này có nghĩa là ta cần chứng minh \(\frac{P I}{P N} = \frac{M D}{M N}\).
    • Chúng ta biết \(\frac{P I}{P N} = \frac{P G}{P M}\). Vậy ta cần chứng minh \(\frac{P G}{P M} = \frac{M D}{M N}\).
  6. Tính toán \(P G\):
    • Ta có \(M G\) là một đoạn thẳng trên \(M P\).
    • Ta có \(M P = M F + F G + G P\) hoặc \(M P = M G + G P\).
    • Từ \(\frac{M E}{M N} = \frac{M G}{M P}\), ta có \(M G = M P \cdot \frac{M E}{M N}\).
    • Do đó, \(P G = M P - M G = M P - M P \cdot \frac{M E}{M N} = M P \left(\right. 1 - \frac{M E}{M N} \left.\right) = M P \cdot \frac{M N - M E}{M N}\).
    • Vì \(M N - M E = M D\), nên \(P G = M P \cdot \frac{M D}{M N}\).
  7. Kiểm tra tỉ lệ \(\frac{P G}{P M}\):
    • Thay biểu thức của \(P G\) vào tỉ lệ \(\frac{P G}{P M}\):\(\frac{P G}{P M} = \frac{M P \cdot \frac{M D}{M N}}{M P} = \frac{M D}{M N}\)
  8. Kết luận:
    • Ta có \(\frac{P I}{P N} = \frac{P G}{P M}\) (từ bước 4).
    • Ta vừa chứng minh được \(\frac{P G}{P M} = \frac{M D}{M N}\) (từ bước 7).
    • Do đó, \(\frac{P I}{P N} = \frac{M D}{M N}\).
    • Nhân cả hai vế với \(N P\), ta được \(P I = N P \cdot \frac{M D}{M N}\).
    • Mà ta đã có \(D F = N P \cdot \frac{M D}{M N}\) (từ bước 1).
    • Vì vậy, \(D F = I P\).
Bài toán đã được chứng minh.

ta sẽ chứng minh rằng DF = IP với các điều kiện sau :

-tam giác MNP

-trên cạnh MN, lấy các điểm D và E sao cho MD=NE

-qua D và E , vẽ các đường thẳng song song với NP ,cắt MP tại F và M tương ứng

-từ G , kẻ đường thẳng GI // MN , cắt NP tại I

28 tháng 8 2021

Bạn vẽ hình vào nhé
a) Xét tg DEM có ME=DE( gt)

                            DI = IE( gt)

=> DI là dg tb tg DEM => DI//MD; DI =1/2 MD

     Xét tg DEN có DF=FN(gt)

                            DI = IE(gt)

=> FI là dg tb tg DEN=> FI//EN ; FI=1/2EN

Mà NE = MP(gt)=> 1/2NE=1/2MP=>DI =FI=> tg DFI cân tại I

Bạn sửa lại b thành I nhé( trong đề bài ý)

b) Ta có : ID// MD( ID là dg tb tg DEM)

=> IDN=DME.       (1)

Ta có FI// EN( FI là dg tb tg DEN)=> IFD=FDN(slt)

Mà IDF+FDN= IDN.          (2)
Ta lại có IFD=IDF( tg DIF cân tại I)     (3)

=> Từ (1) (2) (3) suy ra MNP= 2 IDF

 

 

 

28 tháng 8 2021

Cảm ơn b nhìu

 

31 tháng 3 2023

CÂU d làm chx ạ