\(\frac{1-2a}{a^2+2}\)

tìm min M, max M

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2016

Ta có: \(M-1=\frac{1-2a}{a^2+2}-1=\frac{-\left(a^2+2a+1\right)}{a^2+2}=\frac{-\left(a+1\right)^2}{a^2+2}\le0\)

=>\(M\le1\)

Dấu "=" xảy ra khi: a+1=0<=>a=-1

Lại có:  \(2M=\frac{2-4a}{a^2+2}< =>2M+1=\frac{a^2-4a+4}{a^2+2}=\frac{\left(a-2\right)^2}{a^2+2}\ge0\)

\(< =>2M\ge-1< =>M\ge-\frac{1}{2}\)

Dấu "=" xảy ra khi: a-2=0<=>a=2

Vậy Max P=1 khi a=-1

Min P=-1/2 khi a=2

16 tháng 10 2020

Ta có: \(2a^2+\frac{b^2}{4}+\frac{1}{a^2}=4\Rightarrow8a^4+a^2b^2+4=16a^2\Rightarrow a^2b^2=-8a^4+16a^2-4=-8\left(a^4-2a^2+1\right)+4=-8\left(a^2-1\right)^2+4\le4\)\(\Rightarrow\left|ab\right|\le2\Rightarrow-2\le ab\le2\)

Vậy MaxS = 2023 khi ab = 2 và a2 = 1 do đó \(\left(a,b\right)\in\left\{\left(-1;-2\right);\left(1;2\right)\right\}\)

MinS = 2019 khi ab = -2 và a2 = 1 do đó \(\left(a,b\right)\in\left\{\left(-1;2\right);\left(1;-2\right)\right\}\)

22 tháng 3 2020

a)
\(B=\frac{x^2-4x+1}{x^2}=1-\frac{4}{x}+\frac{1}{x^2}\)

Đặt \(y=\frac{1}{x}\)

\(\Rightarrow B=1-4y+y^2=y^2-4y+4-3=\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra \(\Leftrightarrow y=2\Leftrightarrow\frac{1}{x}=2\Leftrightarrow x=\frac{1}{2}\)

Vậy GTNN của B là -3 <=> x=1/2

22 tháng 3 2020

\(C=\frac{2x}{x^2+1}=\frac{x^2+1-x^2+2x-1}{x^2+1}=1-\frac{\left(x-1\right)^2}{x^2+1}\le1\)

Dấu bằng xảy ra <=> x=1

\(C=\frac{2x}{x^2+1}=\frac{x^2+2x+1-x^2-1}{x^2+1}=\frac{\left(x+1\right)^2}{x^2+1}-1\ge-1\)

Dấu bằng xảy ra <=> x=-1

Vậy maxC=1 <=>x=1
minC=-1 <=> x=-1

AH
Akai Haruma
Giáo viên
8 tháng 9 2017

Lời giải:

a)

Áp dụng BĐT Cauchy-Schwarz:

\(4M=(3x^2+y^2)(3+1)\geq (3x+y)^2\)

\(\Leftrightarrow 4M\geq 1\Leftrightarrow M\geq \frac{1}{4}\)

Vậy \(M_{\min}=\frac{1}{4}\Leftrightarrow x=y=\frac{1}{4}\)

b) Với mọi \(x,y\in\mathbb{R}\Rightarrow (3x-y)^2\geq 0\)

\(\Leftrightarrow 9x^2+y^2-6xy\geq 0\Leftrightarrow (3x+y)^2-12xy\geq 0\)

\(\Leftrightarrow xy\leq \frac{(3x+y)^2}{12}=\frac{1}{12}\)

Vậy \(K_{\max}=\frac{1}{12}\Leftrightarrow x=\frac{1}{6};y=\frac{1}{2}\)

NV
15 tháng 6 2019

\(A=\frac{4x+3}{x^2+1}\Leftrightarrow Ax^2-4x+A-3=0\)

\(\Delta'=4-A\left(A-3\right)=-A^2+3A+4\ge0\) \(\Rightarrow-1\le A\le4\)

\(\Rightarrow A_{max}=4\) khi \(x=\frac{1}{2}\)

\(A_{min}=-1\) khi \(x=-2\)

b/

\(B=\frac{2x^4+2}{2\left(x^2+1\right)^2}=\frac{x^4+2x^2+1+x^4-2x^2+1}{2\left(x^2+1\right)^2}=\frac{1}{2}+\frac{\left(x^2-1\right)^2}{2\left(x^2+1\right)^2}\ge\frac{1}{2}\)

\(\Rightarrow B_{min}=\frac{1}{2}\) khi \(x^2=1\)

\(B=\frac{x^4+2x^2+1-2x^2}{\left(x^2+1\right)^2}=1-\frac{2x^2}{\left(x^2+1\right)^2}\le1\)

\(\Rightarrow B_{max}=1\) khi \(x=0\)

NV
3 tháng 6 2020

\(P=\frac{a^3}{2a+3b}+\frac{b^3}{3a+2b}=\frac{a^4}{2a^2+3ab}+\frac{b^4}{3ab+2b^2}\)

\(P\ge\frac{\left(a^2+b^2\right)^2}{2\left(a^2+b^2\right)+6ab}\ge\frac{\left(a^2+b^2\right)^2}{2\left(a^2+b^2\right)+3\left(a^2+b^2\right)}=\frac{a^2+b^2}{5}=\frac{2}{5}\)

Dấu "=" xảy ra khi \(a=b=1\)