Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
\(A=1+a+\frac{1}{b}+\frac{a}{b}+1+b+\frac{1}{a}+\frac{b}{a}\)
\(\ge1+1+2\sqrt{\frac{a}{b}.\frac{b}{a}}+a+b+\frac{a+b}{ab}=4+a+b+\frac{4\left(a+b\right)}{\left(a+b\right)^2}=4+a+b+\frac{4}{a+b}\)
lại có \(\left(1+1\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow a+b\le\sqrt{2}\)
\(4+a+b+\frac{4}{a+b}=4+\left(a+b+\frac{2}{a+b}\right)+\frac{2}{a+b}\ge4+2\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)
\(\Rightarrow A\ge4+3\sqrt{2}\)
câu 2
ta có:\(\left(2b^2+a^2\right)\left(2+1\right)\ge\left(2b+a\right)^2\Rightarrow3c\ge a+2b\)
\(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{4}{2b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\left(Q.E.D\right)\)
1. Đk: \(x\ge-\frac{1}{3}\)
\(pt\Leftrightarrow4x^3+5x^2+3x+1-\left(2x+1\right)=\sqrt{3x+1}-\left(2x+1\right)\)
\(\Leftrightarrow x\left(x+1\right)\left(4x+1\right)=\frac{3x+1-\left(2x+1\right)^2}{\sqrt{3x+1}+2x+1}\)
\(\Leftrightarrow x\left(x+1\right)\left(4x+1\right)+\frac{x\left(4x+1\right)}{\sqrt{3x+1}+2x+1}=0\)
\(\Leftrightarrow x\left(4x+1\right)\left(x+1+\frac{1}{\sqrt{3x+1}+2x+1}\right)=0\)
Dễ thấy \(x+1+\frac{1}{\sqrt{3x+1}+2x+1}>0\forall x\ge-\frac{1}{3}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{4}\end{cases}}\)
\(A\ge3\left(a+b+c\right)+\frac{9}{a+b+c}=3.3+\frac{9}{3}=12\)
\(A_{min}=12\) khi \(a=b=c=1\)
Ta cần chứng minh: \(3a+\frac{1}{a}\ge2a+2\Leftrightarrow3a+\frac{1}{a}-4\ge2\left(a-1\right)\)
\(\Leftrightarrow\frac{3a^2-4a+1}{a}-2\left(a-1\right)\ge0\Leftrightarrow\left(a-1\right)\left(\frac{3a-1}{a}-2\right)\ge0\Leftrightarrow\frac{\left(a-1\right)^2}{a}\)(đúng)
Tương tự: \(3b+\frac{1}{b}\ge2b+2;3c+\frac{1}{c}\ge2c+2\)
Cộng theo vế: \(A\ge2\left(a+b+c\right)+6=12\)
Dấu bằng xảy ra khi a=b=c=1
đề hay -,- \(a,b,c>0\)\(\Rightarrow\)\(a+b+c>0\) mâu thuẫn GT
...
Đặt: \(a=\frac{1+x}{1-x};b=\frac{1+y}{1-y};c=\frac{1+z}{1-z}\)
\(\Rightarrow-1< x,y,z< 1\)
Theo đề bài thì \(abc=1\)
\(\Rightarrow\frac{1+x}{1-x}.\frac{1+y}{1-y}.\frac{1+z}{1-z}=1\)
\(\Rightarrow x+y+z=-xyz\)
Thế lại bài toán ta có:
\(\text{ Σ}\frac{a\left(3a+1\right)}{\left(a+1\right)^2}=\text{ Σ}\frac{\left(\frac{1+x}{1-x}\right)\left(3.\frac{1+x}{1-x}+1\right)}{\left(\frac{1+x}{1-x}+1\right)^2}=\text{ Σ}\frac{x^2+3x+2}{2}\)
\(=\frac{x^2+y^2+z^2+3\left(x+y+z\right)}{2}+3\)
\(=3+\frac{x^2+y^2+z^2-3xyz}{2}\)
\(\ge3+\frac{3\sqrt[3]{x^2y^2z^2}-3xyz}{2}\)
\(=3+\frac{3\sqrt[3]{x^2y^2z^2}.\left(1-\sqrt[3]{xyz}\right)}{2}\ge3\)
PS: Nè cô
Nè cô Bùi Thị Vân - Trang của Bùi Thị Vân - Học toán với OnlineMath