Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk làm câu a thôi, b dài nhưng tương tự
Gọi a/b=c/d=k =>a=bk ; c=dk
=>\(\frac{\left(2a+3b\right)^2}{\left(3a-4b\right)^2}=\frac{\left(2bk+3b\right)^2}{\left(3bk-4b\right)^2}=\frac{\left[b\left(2k+3\right)\right]^2}{\left[b\left(3k-4\right)\right]^2}=\frac{b^2\left(2k+3\right)^2}{b^2\left(3k-4\right)^2}=\frac{\left(2k+3\right)^2}{\left(3k-4\right)^2}\)(1)
=>\(\frac{\left(2c+3d\right)^2}{\left(3c-4d\right)^2}=\frac{\left(2dk+3d\right)^2}{\left(3dk-4d\right)^2}=\frac{\left[d\left(2k+3\right)\right]^2}{\left[d\left(3k-4\right)\right]^2}=\frac{\left(2k+3\right)^2}{\left(3k-4\right)^2}\)(2)
Từ (1);(2)=> đpcm
ta cs a/b=c/d=>a/c=b/d
=>2a+3b/2c+3d=3a-4b/3c-4d
=>2a+3b/3a-4b=2c+3d/3c-4d
=>bai toan dc c/m
Cau b tuong tu nha ban
don't forget tick me
a) Ta có \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a+3b}{2c+3d}\) (1).
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{2a+3b}{2c+3d}=\frac{3a-4b}{3c-4d}.\)
\(\Rightarrow\frac{2a+3b}{3a-4b}=\frac{2c+3d}{3c-4d}\left(đpcm\right).\)
Chúc bạn học tốt!
a) \(\frac{a}{b}=\frac{c}{d}\)
\(\frac{a}{b}=\frac{c}{d}\)<=>\(\frac{a}{c}=\frac{b}{d}\)
áp dụng t/c dãy tỉ số = nhau :
\(\frac{a}{c}=\frac{b}{d}\)\(=\frac{a-b}{c-d}\) <=> \(\frac{a}{c}\)\(=\frac{a-b}{c-d}\)<=> \(\frac{a}{a-b}=\frac{c}{c-d}\)
mấy bài kia cũng tương tự em ạ !
gợi ý: đặt chung cho cả 4 phần a/b = c/d = k( k khác 0)
=> a=bk; c=dk
rồi thay vào các biểu thức
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=b.k,c=d.k\)
a) Ta có:
\(\frac{a}{3a+b}=\frac{b.k}{3.b.k+b}=\frac{b.k}{b\left(3k+1\right)}=\frac{k}{3k+1}\) (1)
\(\frac{c}{3c+d}=\frac{dk}{3dk+d}=\frac{dk}{d\left(3k+1\right)}=\frac{k}{3k+1}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{3a+b}=\frac{c}{3c+d}\)
b) Ta có:
\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{\left[b\left(k-1\right)\right]^2}{\left[d\left(k-1\right)\right]^2}=\frac{b^2}{d^2}\) (1)
\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\) (2)
Từ (1) và (2) suy ra \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
1, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\Rightarrow\frac{a}{c}=\frac{3a+b}{3c+d}\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)
2, a, Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{ab}{cd}\)
\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{b}{d}\cdot\frac{b}{d}\Rightarrow\frac{ab}{cd}=\frac{b^2}{d^2}\)
\(\Rightarrow\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)
b, Ta có: \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a-b}{c-d}\cdot\frac{a-b}{c-d}\Rightarrow\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
a/ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{3a}{3c}=\frac{5b}{5d}=\frac{3a+5b}{3c+5d}=\frac{3a-5b}{3c-5d}\Rightarrow\frac{3a+5b}{3a-5b}=\frac{3c+5d}{3c-5d}\)
b/ \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\left(\frac{a+b}{c+d}\right)^2\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)
\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
a, Ta có: \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\Rightarrow a=kb;c=kd\)
Thay:
\(\frac{ab}{cd}=\frac{b^2}{d^2}\)
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\)
=> đpcm
\(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{c}=\frac{b}{d}\)
=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{3a^2}{3c^2}=\frac{ab}{cd}=\frac{5ab}{5cd}=\frac{a^2-b^2}{c^2-d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3a^2}{3c^2}=\frac{5ab}{5cd}=\frac{a^2-b^2}{c^2-d^2}=\frac{3a^2+5ab}{3c^2+5cd}\)
=> \(\frac{a^2-b^2}{c^2-d^2}=\frac{3a^2+5ab}{3c^2+5cd}\)
=> \(\frac{3a^2+5ab}{a^2-b^2}=\frac{3c^2+5cd}{c^2-d^2}\)
=> Đpcm
đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=>a=bk
c=dk
bạn thay vào rùi làm tiếp