Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
\(\Rightarrow\left(\dfrac{a+b}{c+d}\right)^{2012}=\dfrac{a^{2012}}{c^{2012}}=\dfrac{b^{2012}}{d^{2012}}=\dfrac{a^{2012}+b^{2012}}{c^{2012}+d^{2012}}\) (đpcm)
1/ (69.210+1210)+(219.273+15.49.94) = 29.39.210+310.220+219.39+5.3.218.38 = 219.39+310.220+219.39+5.218.39
= 218.39(2+3.22+5)=19.218.39
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2012}}{a_1}=\frac{a_1+a_2+a_3+...+a_{2012}}{a_1+a_2+a_3+...+a_{2012}}=1\)(Vì \(a_1+a_2+a_3+...+a_{2012}\ne0\))
Khi đó \(a_1=a_2=a_3=...=a_{2012}\)
=> \(M=\frac{a_1^{2012}+a_2^{2012}+...+a_{2012}^{2012}}{\left(a_1+a_2+...+a_{2012}\right)^{2012}}=\frac{2012.a_1^{2012}}{\left(2012.a_1\right)^{2012}}=\frac{1}{2012^{2011}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2012}}{a_1}=\frac{a_1+a_2+...+a_{2012}}{a_2+a_3+...+a_1}=1\)
\(\Rightarrow a_1=a_2=a_3=...=a_{2012}\)
Khi đó M = \(\frac{2012.a_1^{2012}}{\left(2012.a_1\right)^{2012}}=\frac{2012.a_1^{2012}}{2012^{2012}.a_1^{2012}}=\frac{2012}{2012^{2012}}=\frac{1}{2012^{2011}}\)
Đặt: \(\frac{a}{2013}=\frac{b}{2012}=\frac{c}{2011}=k\Rightarrow\hept{\begin{cases}a=2013k\\b=2012k\\c=2011k\end{cases}}\)
\(P=\frac{\left(a-c\right)^4}{\left(a-b\right)^2\left(b-c\right)^2}=\frac{\left(2013k-2011k\right)^4}{\left(2013k-2012k\right)^2\left(2012k-2011k\right)^2}=\frac{16k^4}{k^4}=16\)
a, ĐK: \(x+1\ge0\Leftrightarrow x\ge-1\)
Ta có: |3-2x|=x+1
=>\(\orbr{\begin{cases}3-2x=x+1\\3-2x=-x-1\end{cases}\Rightarrow\orbr{\begin{cases}x+2x=3-1\\-x+2x=3+1\end{cases}\Rightarrow}\orbr{\begin{cases}3x=2\\x=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{2}{3}\left(tmđk\right)\\x=4\left(tmđk\right)\end{cases}}}\)
Vậy x=2/3 hoặc x=4
b, Xét VP ta có: \(\frac{2013}{1}+\frac{2012}{2}+...+\frac{2}{2012}+\frac{1}{2013}=2013+\frac{2012}{2}+...+\frac{2}{2012}+\frac{1}{2013}\)
\(=1+\left(1+\frac{2012}{2}\right)+\left(1+\frac{2011}{3}\right)+...+\left(1+\frac{2}{2012}\right)+\left(1+\frac{1}{2013}\right)\)
\(=\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2012}+\frac{2014}{2013}+1\)
\(=\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}=2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)\)
=>\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)x=2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)\)
=>\(x=\frac{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}=2014\)
Vậy x=2014
Có \(\frac{a}{b}=\frac{c}{d}\) . Có \(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}\) ( Tính chất dãy tỉ số bằng nhau ) . Nên :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}=\left(\frac{a}{b}\right)^{2012}=\left(\frac{c}{d}\right)^{2012}=\left(\frac{a+b}{c+d}\right)^{2012}\left(1\right)\)
Mà \(\left(\frac{a}{b}\right)^{2012}=\left(\frac{c}{d}\right)^{2012}=\frac{a^{2012}}{b^{2012}}=\frac{c^{2012}}{d^{2012}}=\frac{a^{2012}+c^{2012}}{b^{2012}+d^{2012}}\left(2\right)\).( T/c dãy tỉ số bằng nhau )
Từ \(\left(1\right)\left(2\right)\Rightarrow\left(\frac{a+b}{c+d}\right)^{2012}=\frac{a^{2012}+c^{2012}}{b^{2012}+d^{2012}}\left(đpcm\right)\)