K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

=> a = b = c = d

=> \(D=\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}\)

D = 1 + 1 + 1 + 1 = 4

18 tháng 7 2018

Ta có :   2a + b + c+ d / a - 1 = a + 2b + c + d / b - 1 = a + b + 2c + d / c - 1 = a + b + c +2d / d - 1

  => a + b + c + d / a =  a + b + c + d / b = a + b + c + d / c = a + b + c + d / d

Xét 2 trường hợp : 

TH1:   a + b + c + d = 0

=> a + b = - ( c + d )   ;   b + c = - ( a + d )   ;   c + d = - ( a + b )

Khi đó M = ( -1 ) . 4 = -4

TH2 :  a + b + c + d  khác 0 

=> a = b = c = d

Khi đó M = 1 . 4 = 4

Vậy M = 4 hoặc M = - 4

21 tháng 10 2016

Phải sửa đề thành\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)

Ta có :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\Rightarrow a=b=c=d\)

\(\Rightarrow P=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}=\frac{a}{2a}.4=2\)

21 tháng 10 2016

mình nói hướng làm cho bạn thôi nhé

nếu bạn đặt \(\frac{a}{b}\)\(\frac{b}{c}\)=\(\frac{c}{d}\)=\(\frac{d}{a}\)=k vào thay vào rùi sẽ ra

16 tháng 11 2019

\(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)

\(\left(2a+b\right)\cdot\left(c-2d\right)=\left(2c+d\right)\cdot\left(a-2b\right)\)

\(\frac{2a+b}{2c+d}=\frac{a-2b}{c-2d} \)

\(\frac{2a+b}{2c+d}=\frac{a-2b}{c-2d} \)

\(\frac{2a+b}{2c+d}=\frac{a-2b}{c-2d}=\frac{2a}{2c}=\frac{b}{d}=\frac{a}{c}=\frac{2b}{2d}\) (dãy tỉ số bằng nhau)

\(⇒\frac{b}{d}=\frac{a}{c} ⇒ad=bc ⇒\ \frac{a}{b}=\frac{c}{d}\)

bạn đọc không hiểu chỗ nào thì cứ hỏi nhé!!!

22 tháng 12 2019

\(A=\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Với a + b + c + d = 0      => a + b = - ( c + d )

=> \(A=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Với \(a+b+c+d\ne0\) => a = b = c = d

=> \(A=1+1+1+1=4\)

Ta có: \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c}{c}=\frac{a+b+c+2d}{d}\)

\(\Rightarrow\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)(1)

TH1: a + b + c + d =0

=> a + b = -c - d

     b + c = - a - d

     a + c = -b - d

\(\Rightarrow\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+a}{b+d}\)

    \(=\frac{-c-d}{c+d}+\frac{-a-d}{a+d}+\frac{-b-d}{b+d}\)

    \(=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{a+d}+\frac{-\left(b+d\right)}{b+d}\)

    \(=-1+\left(-1\right)+\left(-1\right)=-3\)

TH2: \(a+b+c+d\ne0\)

Từ (1) => a = b = c =d

\(\Rightarrow\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+a}{b+d}\)

\(=\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}\)

  \(=1+1+1=3\)