\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

CMR: 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2018

a)

    \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow\left(1-\frac{b}{a}\right)=\left(1-\frac{d}{c}\right)\)

\(\Leftrightarrow\frac{a-b}{a}=\frac{c-d}{c}\Leftrightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

b)

    Áp dụng tính chất của dãy tỉ số bằng nhau ta được; 

\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}\)

c)

      \(\frac{b}{a}=\frac{d}{c}\Leftrightarrow3+\frac{b}{a}=3+\frac{d}{c}\Leftrightarrow\frac{3a+b}{a}=\frac{3c+d}{c}\Leftrightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)

9 tháng 12 2018

Bài 1:

Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c

<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1

Sai rồi em ơi 2 trường hợp cơ 

+, bằng -1

+, bằng 2

9 tháng 11 2018

a) sai đề rồi bn 

b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\left(\frac{a+b}{c+d}\right)^3\)(tính chất dãy tỉ số bằng nhau) (1)

\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{a^3-b^3}{c^3-d^3}\)(2)

từ (1) và (2)\(\Rightarrow\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\left(đpcm\right)\)

Đặt : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

Suy ra: a = bk; b = ck; c = dk

Ta có: \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}=k^3\left(1\right)\)

và \(\left(\frac{a+b+c}{b+c+d}\right)^3=\left(\frac{bk+ck+dk}{b+c+d}\right)^3=\frac{k^3\left(b+c+d\right)}{b+c+d}=k^3\left(2\right)\)

Từ (1) và (2) suy ra: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\left(đpcm\right)\)

10 tháng 3 2020

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\), suy ra: a=bk; b=ck; c=dk

ta có: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\left(\frac{bk+ck+dk}{b+c+d}\right)^3=k^3\)mà \(k^3=\left(\frac{a}{b}\right)^3\ge\frac{a}{b}\)dấu"="ra khi a=b=c=d. suy ra: người ra đề tào lao bí đao

nên sửa lại là: Cho\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=1\)
 

30 tháng 7 2019

#)Giải :

Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\left(1\right)\)

Lại có : \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\left(\frac{a+b}{c+d}\right)^2=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\left(2\right)\)

\(\Rightarrowđpcm\)

14 tháng 2 2019

ĐK:b+c+d khác 0

b,c,d khác 0

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\left(đpcm\right)\)