Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\)
➩\(\dfrac{a}{c}=\dfrac{b}{d}\)➩\(\dfrac{2008a}{2009c}=\dfrac{2009b}{2010d}=\dfrac{2008a+2009b}{2009c+2010d}=\dfrac{2008a-2009b}{2009c-2010}\)
➩\(\dfrac{2008a-2009b}{2009c+2009c}=\dfrac{2008c-2009d}{2009a+2010d}\left(đpcm\right)\)
* đpcm : điều phải chứng minh
Chúc bạn học tốt !!!
Nếu thấy đúng thì tick cho mình nhé !!!
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\) (1)
\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{2009a^2}{2009b^2}=\frac{2010c^2}{2010d^2}=\frac{2009a^2+2010c^2}{2009b^2+2010d^2}\) (2)
Từ (1) ; (2) \(\Rightarrow\frac{ac}{bd}=\frac{2009a^2+2010c^2}{2009b^2+2010d^2}\) (đpcm)
cho tỉ lệ thức ab = cd
chứng minh rằng (2008a+2009c)(b+d)=(a+c)(2008+2009d)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có :
\(\frac{2008a+2009c}{a+c}=\frac{2008bk+2009dk}{bk+dk}=\frac{k\left(2008b+2009d\right)}{k\left(b+d\right)}=\frac{2008b+2009d}{b+d}\)
\(\Rightarrow\frac{2008a+2009c}{a+c}=\frac{2008b+2009d}{b+d}\Rightarrow\left(2008a+2009c\right)\left(b+d\right)=\left(a+c\right)\left(2008b+2009d\right)\)
=> ĐPCM