\(\frac{a+5}{a-5}\)=\(\frac{b+6}{b-6}\)(
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{a+5}{a-5}=\frac{b+6}{b-6}\Rightarrow\frac{a+5}{b+6}=\frac{a-5}{b-6}=\frac{\left(a+5\right)+\left(a-5\right)}{\left(b+6\right)+\left(b-6\right)}=\frac{\left(a+5\right)-\left(a-5\right)}{\left(b+6\right)-\left(b-6\right)}\)

\(\Rightarrow\frac{2a}{2b}=\frac{10}{12}\Leftrightarrow\frac{a}{b}=\frac{5}{6}\)

b. Có hai cách giải bài này. Mk sẽ giải cách đặt k nếu bạn muốn bt cách còn lại thì nhắn tin cho mk mk gửi cho

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Rồi từ đây ban thế a =bk;c=dk vào \(\frac{a^2+b^2}{c^2+d^2}\)đáp án sẽ là bằng d ( d là một số bất kì)

CX thế vào \(\frac{ab}{cd}\)nó cx sẽ ra đáp án là d nhé bạn 

LƯU Ý: BẠN KO ĐC GHI d MÀ BẠN PHẢI TÍNH RA NHÉ VD thế vào \(\frac{ab}{cd}\)nó ĐƯỢC \(\frac{bkb}{dkd}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\)

7 tháng 12 2018

Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow a=ck,b=dk\)

Ta có \(\frac{ab}{cd}=\frac{ck.dk}{cd}=\frac{k^2.c.d}{c.d}=k^2\left(1\right)\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(ck\right)^2+\left(dk\right)^2}{c^2+d^2}=\frac{c^2k^2+d^2k^2}{c^2+d^2}=\frac{k^2\left(c^2+d^2\right)}{c^2+d^2}=k^2\left(2\right)\)

Từ 1 vá 2 suy ra \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

3 tháng 7 2015

thật ra thì cx lm đc khoảng 4/5 câu nhưng mà thấy dài quá nên.....

hoy lm bài 1 :

Ta có 2x=3y => x=3/2y

         3y=5z => z=3/5y

Thay x=3/2y và z=3/5y vào x-y+z=-33 ta được ;

3/2y -y+3/5y = -33

=> y( 3/2 - 1 + 3/5 ) = -33

=> 11/10y = -33

=> y=-33 : 11/10

=> y=-30

=> z=3/5y = 3/5 . (-30) =-18

=> x=-33+y-z=-33+(-30)-(-18)

=> x=-45

 

8 tháng 10 2016

\(\frac{a+5}{a-5}=\frac{b+6}{b-6}\Rightarrow\left(a+5\right)\left(b-6\right)=\left(a-5\right)\left(b+6\right)\)

\(\Rightarrow ab-6a+5b-30=ab+6a-5b-30\)

\(\Rightarrow5b=6a\)

\(\Rightarrow\frac{a}{b}=\frac{5}{6}\)

Đpcm

3 tháng 8 2018

Ta có: \(\frac{a+5}{a-5}=\frac{b+6}{b-6}\)

\(\Rightarrow\left(a+5\right).\left(b-6\right)=\left(a-5\right).\left(b+6\right)\)

\(ab-6a+5b-30=ab+6a-5b-30\)

\(\Rightarrow5b-6a=6a-5b\)

\(5b+5b=6a+6a\)

\(10b=12a\)

\(\Rightarrow\frac{a}{b}=\frac{10}{12}=\frac{5}{6}\)

Vậy \(\frac{a}{b}=\frac{5}{6}\)

Tham khảo nhé~

21 tháng 7 2019

\(đat:\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(a,\frac{a^2-b^2}{ab}=\frac{b^2k^2-b^2}{bkb}=\frac{b^2\left(k^2-1\right)}{b^2k}=\frac{k^2-1}{k};\frac{c^2-d^2}{cd}=\frac{d^2\left(k^2-1\right)}{d^2k}=\frac{k^2-1}{k}\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\) \(b,\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left[b\left(k+1\right)\right]^2}{b^2k^2+b^2}=\frac{b^2\left(k+1\right)^2}{b^2\left(k^2+1\right)}=\frac{\left(k+1\right)^2}{\left(k^2+1\right)};\frac{\left(c+d\right)^2}{c^2+d^2}=\frac{\left[d\left(k+1\right)\right]^2}{d^2k^2+d^2}=\frac{d^2\left(k+1\right)^2}{d^2\left(k^2+1\right)}=\frac{\left(k+1\right)^2}{k^2+1}\Rightarrow\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\) \(c,\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1};\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)

16 tháng 1 2020

bài 1 sai đề ko bạn

16 tháng 1 2020

đề nào và mình ghi sai thứ tự bài

5 tháng 11 2016

\(\left(a+5\right)\left(b-6\right)=\left(a-5\right)\left(b+6\right)\)

\(\Leftrightarrow ab-6a+5b-30=ab+6a-5b-30\)

\(\Leftrightarrow ab-ab+5b+5b-30+30=6a+6a\)

\(\Leftrightarrow10b=12a\)

\(\Rightarrow\frac{a}{b}=\frac{10}{12}=\frac{5}{6}\left(đpcm\right)\)

5 tháng 11 2016
  • \(\frac{a+5}{a-5}\)=\(\frac{b+6}{b-6}\)(ta hoán đổi trung tỉ)=>\(\frac{a+5}{b+6}\)=\(\frac{a-5}{b-6}\)=>\(\frac{\left(a+5\right)-5}{\left(b+6\right)-6}\)=\(\frac{\left(a+5\right)-a}{\left(b+6\right)-b}\)=a/b=5/6
21 tháng 8 2016

\(\frac{a+5}{a-5}=\frac{b+6}{b-6}\Rightarrow\left(a+5\right).\left(b-6\right)=\left(a-5\right)\left(b+6\right)\)

\(\Rightarrow ab-6a+5b-30=ab+6a-5b-30\)

\(\Rightarrow\left(ab-6a+5b-30\right)-\left(ab+6a-5b-30\right)=0\)

\(\Rightarrow ab-6a+5b-30-ab-6a+5b+30=0\)

\(\Rightarrow-12a+10b=0\)

\(\Rightarrow-12a=10b\Rightarrow\frac{a}{b}=\frac{-10}{12}\Rightarrow\frac{a}{b}=\frac{-5}{6}\)

21 tháng 8 2016

\(\frac{a+5}{a-5}=\frac{b+6}{b-6}\Rightarrow ab+5b-6a-30=ab+6a-5b-30\)

\(\Rightarrow5a-6b=6a-5b\)

\(5a-6a=-5b+6b\)

\(-a=b\)

\(\frac{a}{b}=-1\)

3 tháng 11 2018

\(x.y=12\Rightarrow y=\frac{12}{x}\) thay vào pt ta có : 

\(\frac{x}{3}=\frac{12}{\frac{x}{4}}\)

\(\Leftrightarrow\frac{x}{3}=\frac{3}{x}\) \(\Leftrightarrow x^2=9\) \(\Rightarrow Th1:x=3\Rightarrow y=4\)

\(Th2:x=-3\Rightarrow y=-4\)

3 tháng 11 2018

đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow x=3k,y=4k\)

ta có:

\(x.y=3k.4k=12.k^2=12\Rightarrow k^2=1\Rightarrow\orbr{\begin{cases}k=1\\k=-1\end{cases}}\)

\(k=1\Rightarrow x=3.1=3,y=4.1=4\)

\(k=\left(-1\right)\Rightarrow x=3.\left(-1\right)=-3,y=4.\left(-1\right)=-4\)

vậy x=3,y=4 hay x=-3, y=-4

2.\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)

\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\left(2\right)\)

từ (1) và (2) => \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\left(đpcm\right)\)

6 tháng 4 2017

Có \(\frac{a}{b}=\frac{c}{d}\)

=> \(\frac{a}{c}=\frac{b}{d}\)

\(=>\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{ac}{bd}\)

=>\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ac}{bd}\)

=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{ac}{bd}\)

Vậy =>đpcm

29 tháng 12 2018

Nguyễn Tuấn Minh giải sai rồi bạn ơi