K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2020

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)

a) \(\frac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\frac{\left(kb\right)^{2004}-b^{2004}}{\left(kb\right)^{2004}+b^{2004}}=\frac{k^{2004}b^{2004}-b^{2004}}{k^{2004}b^{2004}+b^{2004}}=\frac{b^{2004}\left(k^{2004}-1\right)}{b^{2004}\left(k^{2004}+1\right)}=\frac{k^{2004}-1}{k^{2004}+1}\)(1)

\(\frac{c^{2004}-d^{2004}}{d^{2004}+d^{2004}}=\frac{\left(kd\right)^{2004}-d^{2004}}{\left(kd\right)^{2004}+d^{2004}}=\frac{k^{2004}d^{2004}-d^{2004}}{k^{2004}d^{2004}+d^{2004}}=\frac{d^{2004}\left(k^{2004}-1\right)}{d^{2004}\left(k^{2004}+1\right)}=\frac{k^{2004}-1}{k^{2004}+1}\)(2)

Từ (1) và (2) => đpcm

b) \(\frac{a^{2005}}{b^{2005}}=\frac{\left(kb\right)^{2005}}{b^{2005}}=\frac{k^{2005}b^{2005}}{b^{2005}}=k^{2005}\)(1)

\(\frac{\left(a-c\right)^{2005}}{\left(b-d\right)^{2005}}=\frac{\left(kb-kd\right)^{2005}}{\left(b-d\right)^{2005}}=\frac{\left[k\left(b-d\right)\right]^{2005}}{\left(b-d\right)^{2005}}=\frac{k^{2005}\left(b-d\right)^{2005}}{\left(b-d\right)^{2005}}=k^{2005}\)(2)

Từ (1) và (2) => đpcm

2 tháng 1 2017

Đặt \(\frac{a}{2003}\) = \(\frac{b}{2004}\) = \(\frac{c}{2005}\) = k

=> a = 2003k; b = 2004k và c = 2005k

Xét hiệu:

4(a - b)(b - c) - (c - a)2

= 4(2003k - 2004k)(2004k - 2005k) - (2005k - 2003k)2

= 4(-k)(-k) - (2k)2

= 4k2 - 22.k2

= 4k2 - 4k2 = 0

Do đó 4(a - b)(b - c) = (c - a)2.

2 tháng 1 2017

Bạn học trường nào vậy Mk thay cai bài này la cua huyện mk nên hỏi vây thôi

23 tháng 10 2016

Áp dụng tính chất của dãy tỉ số bằng nhau :

\(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=\frac{a-b}{2003-2004}=\frac{b-c}{2004-2005}=\frac{c-a}{2005-2003}\)

\(\Leftrightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)

\(\Rightarrow\left(\frac{a-b}{-1}\right)\left(\frac{b-c}{-1}\right)=\left(\frac{c-a}{2}\right)^2\)

\(\Rightarrow\left(a-b\right)\left(b-c\right)=\frac{\left(c-a\right)^2}{4}\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)

Vậy ...

3 tháng 3 2018

Đặt: \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=b\Rightarrow\hept{\begin{cases}a=2003b\\b=2004b\\c=2005b\end{cases}}\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=4\left(2003b-2004b\right)\left(2004b-2005b\right)=4.-b.-b=4b^2\)

\(\Rightarrow\left(c-a\right)^2=\left(2005b-2003b\right)^2=2k^2=4k^2\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\left(đpcm\right)\)

3 tháng 3 2018

Đặt a/2003=b/2004=c/2005=k

Suy ra a=2003k, b=2004k, c=2005k            (*)

Thay (*) vào 4(a-b)(b-c) ta được:

4(a-b)(b-c)=4(2003k-2004k) (2004k-2005k)

              =4k(2003-2004).k(2004-2005)=4k2 .-1.-1

              =4.k2                                                           (1)

Thay (*) vào (c-a)2 ta được:

(c-a)2 =(2005k-2003k)2

= k2 (2005-2003)2

=k2 .4                                                              (2)

Từ (1) và (2)

Suy ra ĐPCM

nha

19 tháng 10 2016

\(\frac{a}{2003}=\frac{b}{2004}=\frac{a-b}{2003-2004}=-\left(a-b\right)\) = -(b-c)=\(\frac{c-a}{2}\)

=> -(a-b).(-(b-c)=\(\frac{c-a}{2}.\frac{c-a}{2}=\frac{\left(c-a\right)^2}{4}\)

<=> 4.(a-b).(b-c)=(c-a)2

26 tháng 10 2020

Đặt \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=k\left(k\ne0\right)\)

\(\Rightarrow a=2003k\)\(b=2004k\)\(c=2005k\)

Ta có: \(4\left(a-b\right)\left(b-c\right)=4\left(2003k-2004k\right)\left(2004k-2005k\right)\)

\(=4.\left(-k\right).\left(-k\right)=4k^2\)(1)

Mặt khác ta có: \(\left(c-a\right)^2=\left(2005k-2003k\right)^2=\left(2k\right)^2=4k^2\)(2)

Từ (1) và (2) \(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)( đpcm )