Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F
* Xét tam giác BDE và tam giác EFB có:
+) \widehat{DEB} = \widehat{EBF} ( so le trong)
+) BE chung
+) \widehat{FEB} = \widehat{DBE} ( so le trong)
=> Tam giác BDE = tam giác EFB ( g.c.g )
=> EF = BD ( 2 cạnh tương ứng)
* Mà AD = BD ( D là trung điểm của AB)
=> EF = AD. ( cpcm)
Hình bạn tự vẽ nha
Bài làm :
a ) Gọi giao điểm của tia phân giác của góc BAC và đường vuông góc với tia phân giác của BAC là N
Xét tam giác AMD và tam giác AME có :
AMD = AME ( = 90o )
DM : cạnh chung
DAM = EDM ( vì AN là tia phân giác của BAC => BAN = CAN hay DAM = EDM )
DO đó tam giác AMD = tam giác AME ( g . c . g )
=> AD = AE ( hai cạnh tương ứng )
=> tam giác ADE cân tại A ( định nghĩa tam giác cân )
Vì tam giác ADE cân tại A ( cmt )
=> AEM = ADM ( tính chất của tam giác cân ) ( 1 )
Vì BF // AC ( gt ) => BFD = AED ( đồng vị ) ( 2 )
Từ ( 1 ) và ( 2 ) => ADF = BFD hay BDF = BFD
=> tam giác BDF cân tại B ( dấu hiệu nhận biết tam giác cân )
b ) Xét tam giác BFM và tam giác CEM có :
FBM = ECM ( Vì BF // AC ( gt ) )
MB = MC ( vì M là trung điểm của BC ( gt ) )
BMF = CME ( đối đỉnh )
DO đó tam giác BFM = tam giác CEM ( g . c. g )
=> MF = ME ( 2 cạnh tương ứng ) mà MF + ME = EF
=> M là trung điểm của EF
c ) AC - AB = ( AE + EC ) - ( AD - BD )
= AE + EC - AD + BD
= EC + BD ( vì AE = AD ( cmt ) ) ( 1 )
Vì tam giác BDF cân tại B ( CM a ) => BD = BF ( định nghĩa tam giác cân ) ( 2 )
tam giác BFM = tam giác CEM ( CM b ) => BF = EC ( hai cạnh tương ứng ) ( 3 )
Từ 1,2,3 => AC - AB = 2BD
Cảm ơn bạn nguyen duc thang mình cho bạn 3 tk rồi đó
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a, xét △ AMB và △ AMC có:
AB=AC(gt)
góc BAM=góc CAM (gt)
AM chung
=> △ AMB= △ AMC(c.g.c)
b,xét △ AHM và △ AKM có:
AM cạnh chung
góc HAM=ˆgóc KAM (gt)
=>△ AHM= △ AKM(CH-GN)
=> AH=AK
c,gọi I là giao điểm của AM và HK
xét △ AIH và △ AIK có:
AH=AK(theo câu b)
góc AIH=ˆgóc AIK (gt)
AI chung
=> △ AIH=△ AIK (c.g.c)
=> góc AIH=ˆgóc AIK
mà góc AIH+góc AIK=180độ(2 góc kề bù)
=> HK ⊥ AM
Đay lè p!
Câu hỏi của Đỗ Lê Tú Linh - Toán lớp 7 - Học toán với OnlineMath
Câu hỏi của Đỗ Lê Tú Linh - Toán lớp 7 - Học toán với OnlineMath
a) Do tam giác ABC vuông tại A
=> Theo định lý py-ta-go ta có
BC^2=AB^2+AC^2
=>BC=\(\sqrt{AB^2+AC^2}\)= \(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15
Vậy cạnh BC dài 15 cm
b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có
BE là cạnh chung
AB=BD(Giả thiết)
=>Tam giác ABE=Tam giác DBE(CGV-CH)
B A C H D E K M
GT | △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm D BC : BD = BA. DK ⊥ BC (K AB , DK ∩ AC = { E } AH ⊥ BC , AH ∩ BE = { M } |
KL | a, BC = ? b, △ABE = △DBE ; BE là phân giác ABC c, △AME cân |
Bài giải:
a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)
b, Xét △ABE vuông tại A và △DBE vuông tại D
Có: AB = BD (gt)
BE là cạnh chung
=> △ABE = △DBE (ch-cgv)
=> ABE = DBE (2 góc tương ứng)
Mà BE nằm giữa BA, BD
=> BE là phân giác ABD
Hay BE là phân giác ABC
c, Vì △ABE = △DBE (cmt)
=> AEB = DEB (2 góc tương ứng)
Vì DK ⊥ BC (gt)
AH ⊥ BC (gt)
=> DK // AH (từ vuông góc đến song song)
=> AME = MED (2 góc so le trong)
Mà MED = MEA (cmt)
=> AME = MEA
=> △AME cân
vì AM là tia phân giác đồng thời là tia phân giác của \(\widehat{DAE}\)
⇒ΔADE cân tại E
⇒\(\widehat{D}=\widehat{AED}\)(1)
vì BF \\ CA ( GT )
⇒ \(\widehat{BFD}=\widehat{AED}\)(2 góc đồng vị bằng nhau)(2)
từ (1) và (2) ⇒ \(\widehat{D}=\widehat{AFD}\)
⇒ΔBDF cân tại B
tui ko quen kẻ hình trên máy tính
vì AC \\ BF (câu a)
⇒\(\widehat{FBM}=\widehat{ECM}\)(2 góc so le trong)
xét ΔBMF và ΔCME có
\(\widehat{FBM}=\widehat{ECM}\)(CMT)
\(\widehat{BMF}=\widehat{CME}\)(2 góc đối đỉnh)
BM = MC(M là trung điểm của BC)
⇒ΔBMF=ΔCME(G.C.G)
⇒EM=FM(2 cạnh tương ứng)
⇒M là trung điểm của FE