Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta ABC\)vuông tại A
Áp dụng định lí py-ta-go ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC^2=20^2+15^2=625\)
\(\Rightarrow BC=\sqrt{625}=25\left(cm\right)\)
\(\Delta AHB\)vuông tại H
\(\Rightarrow HA^2+HB^2=AB^2\)
\(\Rightarrow HB^2=AB^2-HA^2=20^2-12^2=256\)
\(\Rightarrow HB=\sqrt{256}=16\left(cm\right)\)
\(\Delta AHC\)vuông tại H
\(\Rightarrow AH^2+CH^2=AC^2\)
\(\Rightarrow CH^2=AC^2-AH^2=15^2-12^2=81\)
\(\Rightarrow CH=\sqrt{81}=9\left(cm\right)\)
-Tam giác ABC vuông tại A
Áp dụng định lí Pytago
Ta có: \(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{20^2+15^2}=\sqrt{625}=25\) (cm)
-Tam giác ABH vuông tại H
Theo Pytago có: \(BH^2+AH^2=AB^2\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\) (cm)
- Tam giác AHC vuông tại H
Theo pytago: \(AH^2+CH^2=AC^2\Rightarrow HC=\sqrt{AC^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\) (cm)
Ta có:
+)\(AH\perp BC\left(gt\right)\)
\(\Rightarrow\widehat{H_1}=\widehat{H_2}=90^0\)
Xét \(\Delta AHC\) có \(\widehat{H_1}=90^0\left(cmt\right)\Rightarrow\Delta AHC\) vuông tại \(H\)
\(\Rightarrow AC^2=AH^2+HC^2\)(Định lý Py-ta-go)
\(\Leftrightarrow15^2=20^2+HC^2\)
\(\Leftrightarrow225=400+HC^2\)
.....
Mà như thế thì HC âm nên ko thỏa mãn nên tớ nghĩ bài này sai sai òi
*Bạn tự vẽ hình nhé!
Áp dụng đ/lí Pi-ta-go trong tam giác ABC vuông tại A có:
BC2 = AB2 + AC2
hay BC2 = 202 + 152
=> BC2 = 625 = 252
=> BC = 25 (cm)
Áp dụng đ/lí Pi-ta-go trong tam giác AHB vuông tại H có:
AB2 = AH2 + HB2
=> BH2 = AB2 - AH2
=> BH2 = 202 - 122
=> BH2 = 256 = 162
=> BH = 16 (cm)
Mà H thuộc BC nên H nằm giữa BC
=> BH + HC = BC
=> 16 + HC = 25
=> HC = 25 - 16
=> HC = 9 (cm)
Vậy BC = 25 cm; BH = 16 cm; CH = 9 cm.
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=20^2-12^2=256\)
hay AC=16(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{12^2}{20}=7.2\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{16^2}{20}=12.8\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AH^2=AB^2-HB^2=12^2-7.2^2=92.16\)
hay AH=9,6(cm)
Vậy: AC=16cm; BH=7,2cm; CH=12,8cm; AH=9,6cm
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH là cạnh chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
b) Ta có: ΔABH=ΔACH(cmt)
⇒\(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
hay \(\widehat{MAH}=\widehat{NAH}\)
Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH là cạnh chung
\(\widehat{MAH}=\widehat{NAH}\)(cmt)
Do đó: ΔAMH=ΔANH(cạnh huyền-góc nhọn)
⇒AM=AN(hai cạnh tương ứng)
c) Ta có: ΔAHB=ΔAHC(cmt)
⇒HB=HC(hai cạnh tương ứng)
Xét ΔBMH và ΔCNH có
HB=HC(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy trong ΔABC cân tại A)
Do đó: ΔBMH=ΔCNH(cạnh huyền-góc nhọn)
d) Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(định nghĩa tam giác cân)
⇒\(\widehat{AMN}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔAMN cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
⇒\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)
mà \(\widehat{AMN}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên MN//BC(dấu hiệu nhận biết hai đường thẳng song song)
e)
*Tính AB
Ta có: HB=HC(cmt)
mà HB+HC=BC(H nằm giữa B và C)
nên \(BH=CH=\frac{BC}{2}=\frac{12cm}{2}=6cm\)
Áp dụng định lí pytago vào ΔABH vuông tại H, ta được
\(AB^2=BH^2+AH^2\)
hay \(AB^2=6^2+8^2=100\)
⇒\(AB=\sqrt{100}=10cm\)
Vậy: AB=10cm
Bài 1:
Vì \(\Delta\)ABC đều nên AB = AC = BC = 12 cm
và \(\widehat{ABC}\) = \(\widehat{ACB}\) hay \(\widehat{ABI}\) = \(\widehat{ACI}\)
Xét \(\Delta\)ABI vuông tại I và \(\Delta\)ACI vuông tại I có:
AB = AC (c/m trên)
\(\widehat{ABI}\) = \(\widehat{ACI}\) (c/m trên)
=> \(\Delta\)ABI = \(\Delta\)ACI (ch - gn)
=> BI = CI (2 cạnh t/ư)
mà BI + CI = 12
=> BI = CI = \(\frac{12}{2}\) = 6
Áp dụng định lý pytago vào \(\Delta\)ABI vuông tại I có:
AB2 = AI2 + BI2
=> 122 = AI2 + 62
=> AI2 = 122 - 62
=> AI2 = 108
=> AI = \(\sqrt{108}\)
Vậy AI = \(\sqrt{108}\).
Bài 1:
Giải:
Vì t/g ABC đều nên AB = AC = BC = 12 cm
Xét \(\Delta AIB,\Delta AIC\) có:
\(AB=AC\) ( do t/g ABC đều )
\(\widehat{B}=\widehat{C}\) ( do t/g ABC đều )
\(\widehat{I_1}=\widehat{I_2}=90^o\)
\(\Rightarrow\Delta AIB=\Delta AIC\)( c.huyền - g.nhọn )
\(\Rightarrow IB=IC\) ( cạnh t/ứng )
Mà \(BC=12\left(cm\right)\)
\(\Rightarrow IB=IC=6cm\)
Trong t/g AIB, áp dụng định lí Py-ta-go có:
\(BI^2+AI^2=AB^2\)
\(\Rightarrow6^2+AI^2=12^2\)
\(\Rightarrow AI^2=108\)
\(\Rightarrow AI=\sqrt{108}\left(cm\right)\)
Vậy \(AI=\sqrt{108}cm\)
BH và CH thì so sánh được nhưng không so sánh được với AH đâu bạn
AB<AC nên HB<HC
còn chưa thể đủ dữ kiện để so sánh AH với BH và CHđược nha bạn