\(\Delta\)ABC vuông tại A có AB=6cm, AC=8cm, dường phân giác BE. Kẻ EH
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

B A c E h k

a) áp dụng định lý Pitago tính được BC=10

b) Xét 2 tam giác có BAE = BHE = 90 , ABE = HBE vì BE là phân giác , BE chung => 2 tam giác bằng nhau theo ch-gn

c)Xét tam giác AKE và HCE có EAK = EHC = 90, AE=HE , AEH = HEC vì đối đỉnh => EK = EC

AE= HE

Xét tam giác EHC vuông tại h có EC là canh huyền => EC dài hơn HE

Từ 2 điều trên => AE<EC

10 tháng 5 2019

Trả lời................

Tớ không biết đúng hay sai đâu nha Ý Phạm

a,Xét tam giác ABE (BAE^ vuông) và tam giác HBE (BHE^ vuông) có:

BE=BE (cạnh chung)

ABE^=HBE^

 ⟹ ABE^=HBE^(ch+gn)

b,Ta có:

BA=BH (tam giác ABE = tam giác HBE)

EA=EH (________________________)

 ⟹ BE là đường trung trực của AH

c,Xét tam giác EKA và tam giác ECH có

AE=EH (gt)

EAK^=EHK^(=90o)

AEK^=HEC^(đối đỉnh)

 ⟹Tam giác EKA=tam giacsEHK (g-c-g)

 ⟹EK=EH ( cạnh tương ứng)

d,Từ điểm E đến đường thẳng HC có:
EH là đường vuông góc

EC là đường xiên

 ⟹EH<EC( quan hệ đường vuông góc)

Mà EH=AE(tam giác ABE = tam giác HBE)

 ⟹AE<AC

10 tháng 5 2019

Xin lỗi mình nhầm ở ròng cuối nha là

EC>AE

bài này mik làm 3 lần rùi dễ lắm! cố suy nghĩ đi

1 tháng 5 2017

Bài này dễ lắm bạn thử dành thời gian suy nghĩ đi

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔBAE=ΔBHE

b: ta có: ΔBAE=ΔBHE

nên BA=BH và EA=EH

=>EB là đường trug trực của AH

c: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có

EA=EH

\(\widehat{AEK}=\widehat{HEC}\)

Do đo: ΔAEK=ΔHEC

Suy ra: EK=EC

2 tháng 5 2020

a)Xét ΔABE và ΔHBE, ta có

:\widehat{BAE} =\widehat{BHE} =90^0

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác BE).

BE là cạnh chung.

=> ΔABE = ΔHBE

b)

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

c)

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE =ΔCHE

=> EK = EC(hai cạnh tuong ứng)

d)

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

2 tháng 5 2020

AE<Ec

18 tháng 4 2016

ko bít

đề ngay chỗ K là giao điểm của AB và HE là sao mk vẽ ko được???

8789

10 tháng 2 2019

Hỏi đáp Toán

a) Xét hai tam giác vuông tam giác ABE và tam giác HBE ta có:

góc B1 = góc B2 (BE là phân giác của góc B)

BE: cạnh chung

=> tam giác ABE = tam giác HBE (cạnh huyền - góc nhọn)

29 tháng 4 2019

xét \(\Delta abe\)và \(\Delta hbe\)có:

\(\widehat{BAE}=\widehat{BHE}=90^O\)

BE LÀ CẠNH CHUNG

\(\widehat{ABE}=\widehat{HBE}\)(vì  BE là đường phân giác của \(\widehat{B}\))

DO ĐÓ : T/G ABE = T/G HBE (G-C-G)

30 tháng 4 2019

b, tam giác ABE = tam giác HBE (Câu a)

=> EA = EH (đn)

tam giác EHC vuông tại H do EH _|_ BC (gt) => EH < EC

=> AE < EC (tcbc)