K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2021

Xin lỗi mấy bạn . Mình bị thiếu chỗ (cho tam giác ABC vuông tại A)

7 tháng 5 2021

Giúp mình với 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

a) Ta có: \(\widehat{ADB}\) là góc ngoài tại đỉnh D của ΔDBC(DA và DC là hai tia đối nhau)

nên \(\widehat{ADB}=\widehat{DBC}+\widehat{C}\)(định lí góc ngoài của tam giác)

hay \(\widehat{C}=\widehat{ADB}-\widehat{DBC}\)

hay \(\widehat{C}=\widehat{MDB}-\widehat{DBC}\)(1)

Ta có: Đường trung trực của BD cắt AC tại M(gt)

⇔M nằm trên đường trung trực của BD

⇔MB=MD(tính chất đường trung trực của một đoạn thẳng)

Xét ΔMBD có MB=MD(cmt)

nên ΔMBD cân tại M(định nghĩa tam giác cân)

\(\widehat{MBD}=\widehat{MDB}\)(hai góc ở đáy)(2)

Từ (1) và (2) suy ra \(\widehat{C}=\widehat{MBD}-\widehat{ABD}\)(3)

Ta có: \(\widehat{ABD}+\widehat{MBA}=\widehat{MBD}\)(tia BA nằm giữa hai tia BD và BM)

hay \(\widehat{MBA}=\widehat{MBD}-\widehat{ABD}\)(4)

Từ (3) và (4) suy ra \(\widehat{C}=\widehat{MBA}\)

Xét ΔMAB và ΔMBC có

\(\widehat{MBA}=\widehat{MCB}\)(cmt)

\(\widehat{AMB}\) chung

Do đó: ΔMAB∼ΔMBC(g-g)

3 tháng 5 2018

Giải:

a) Gọi E là giao điểm của ME và BD.

Xét △MAB và △MBC có:

góc MEB = góc MED = 90 độ

BE/EM = DE/EM

⇔ △MAB ∼ △MBC (c.g.c) (đpcm)

22 tháng 2 2023

a) Xét \(\Delta ABD\) và \(\Delta ACE\), ta có \(\widehat{ADB}=\widehat{AEC}\left(=90^o\right)\) và góc A chung \(\Rightarrow\Delta ABD~\Delta ACE\left(g.g\right)\) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{AD}{AE}\) \(\Rightarrowđpcm\)

b) Từ \(AE.AB=AD.AC\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Xét \(\Delta ADE\) và \(\Delta ABC\), ta có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\) và góc A chung \(\Rightarrowđpcm\)

c) Do \(\Delta ADE~\Delta ABC\) \(\Rightarrow\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2\)

Lại có \(\dfrac{AD}{AB}=cosA=cos45^o=\dfrac{1}{\sqrt{2}}\) nên \(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{1}{\sqrt{2}}\right)^2=\dfrac{1}{2}\)\(\Rightarrow\dfrac{S_{ADE}}{S_{ABC}-S_{ADE}}=\dfrac{1}{2-1}\) \(\Rightarrow\dfrac{S_{ADE}}{S_{BEDC}}=1\)

d) Kẻ đường cao AF của tam giác ABC. Tương tự câu b, ta chứng minh được các tam giác BFE và CDF cùng đồng dạng với tam giác ABC. Từ đó suy ra \(\Delta BEF~\Delta DCF\) \(\Rightarrow\widehat{BFE}=\widehat{CFD}\) \(\Rightarrow90^o-\widehat{BFE}=90^o-\widehat{CFD}\) \(\Rightarrow\widehat{EFM}=\widehat{DFM}\) \(\Rightarrow\) FM là tia phân giác trong tam giác DEF \(\Rightarrow\dfrac{MD}{ME}=\dfrac{FD}{FE}\).

Mặt khác, \(FN\perp FM\) \(\Rightarrow\) FN là phân giác ngoài của tam giác DEF \(\Rightarrow\dfrac{ND}{NE}=\dfrac{FD}{FE}\). Từ đó suy ra \(\dfrac{MD}{ME}=\dfrac{ND}{NE}\) \(\Rightarrowđpcm\)