\(\Delta ABC\),lấy M tùy ý trong tam giác ,kẻ MH,MI,MK lần lượt vuông góc với AB,AC,BC...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2020

A B M K C I H

a) Xét \(\Delta AHI\)và \(\Delta AKI\)có :

   AI cạnh chung

  \(\widehat{IHA}=\widehat{IKA}\)(AI là tia phân giác của A)

=> \(\Delta AHI=\Delta AKI\left(ch-gn\right)\)

=> AH = AK(2 cạnh tương ứng)

b)  Gọi M là trung điểm của BC

Xét \(\Delta BMI\)và \(\Delta CMI\)có :

BM = CM(gt)

\(\widehat{BMI}=\widehat{CMI}=90^0\)

MI cạnh chung

=> \(\Delta BMI=\Delta CMI\left(c-g-c\right)\)

=> IB = IC(2 cạnh tương ứng)

\(\Delta AHI=\Delta AKI\left(cmt\right)\)=> IH = IK(hai cạnh tương ứng)

Xét \(\Delta IHB\)và \(\Delta IKC\)có :

+) IH = IK(chứng minh trên)

+) IB = IC(chứng minh trên)

=> IH + IB = IK + KC

=> BH = CK(hai cạnh tương ứng)

c) Ta có : AC = AK + KC (1)

               AB = AH - BH (2)

Từ (1) và (2) suy ra : AC + AB = (AK + AH) + (KC - BH)

Do AH = AK,BH = CK => AC + AB = 2AK , suy ra :

AK = \(\frac{AC+AB}{2}\)

Tương tự ta được \(CK=\frac{AC-AB}{2}\)

27 tháng 3 2016

moi hoc lop 5

27 tháng 3 2016

giải hộ cái 

25 tháng 4 2018

ai làm được mikcho 3

câu b thì càng tốt

7 tháng 3 2018

Đơn giản thôi:

O F D E A B C

Vẽ AO, BO, CO

Ta có: \(\hept{\begin{cases}AE^2=AO^2-OE^2\\BF^2=BO^2-OF^2\\CD^2=OC^2-OD^2\end{cases}}\)

Cộng vế theo vế:

Ta có: \(AE^2+BF^2+CD^2=AO^2-OE^2+BO^2-OF^2+OC^2-OD^2\)

Suy ra: \(AE^2+BF^2+CD^2=\left(AO^2-OF^2\right)+\left(BO^2-OD^2\right)+\left(OC^2-OE^2\right)=AF^2+BD^2+CE^2\)

Vậy...............

19 tháng 4 2016

a)

xét tam giác ABM và tam giác ACM có:
AB=AC(gt)

MB=MC(gt)

B=C(gt)

suy ra tam giác ABM=ACM(c.g.c)

b)

xét 2 tam giác vuông AHC và AKB có:

AB=AC(gt)

A(chung)
suy ra tam giác AHB=AKB(CH-GN)

suy ra AH=AK

AB=AC

BH=AB=AH

CK=AC-AK

từ tất cả nh điều trên suy ra BH=CK

c)

xét tam giác KBC và tma giác HCB có:
CB(chugn)
HB=KC(theo câu b)
B=C(gt)

suy ra tam giác KBC=ACB(c.g.c)

suy ra KBC=HCB suy ra tam giác IBC cân tại I

19 tháng 4 2016

A B C H K I