Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
SUy ra: DE//BC
a: Xét tứ giác ADCF có
E là trung điểm của AC
E là trung điểm của DF
Do đó: ADCF là hình bình hành
Suy ra: CF//AD và CF=AD
hay CF//AB và CF=BD
b: Xét ΔBCD và ΔFDC có
BC=FD
BD=FC
CD chung
Do đó: ΔBCD=ΔFDC
c: Xét ΔACB có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔACB
Suy ra: DE//BC
a) Xét tam giác AEDvà tam giác CÈ có :
AE=EC(vì E là trung điểm của AC )
góc DAE=góc FCE(so le trong)
DE=EF( vì E là trung điểm của F )
=> 2 tam giác bằng nhau theo trường hợp cgc(dpcm)
b)xét tam giác AED và tam giác CEF (cmt)
=> góc ADE=góc F
=> AB song song CF( có 2 góc bằng nhau ở vị trí so le trong )
c) xét tam giác BDC và tam giác FCD là
DB=CF (cmt )
góc BDC= góc F (cmt)
DC chung
=> 2 tam giác bằng nhau theo trương hợp cgc
d)tam giác BDC =tam giác FCD (cmt)
=> góc c = góc d
=> DE song song BC ( có 2 góc = nhau ở vị trí so le trong )
tam giác BDC = bằng tam giác FCD
=> BC=DF
=> DE = 1/2 DF
mà DE==BC
=> DE = 1/2 Bc (dpcm)
Dúng đó nha tich đúng cho mình nha ! thanks bạn nha nha !
a) Xét ΔAED và ΔCEF có:
AE = CE (suy từ gt)
\(\widehat{AED}\) = \(\widehat{CEF}\) (đối đỉnh)
ED = EF (gt)
=> ΔAED = ΔCEF (c.g.c).
b) Vì ΔAED = ΔCEF nên \(\widehat{DAE}\) = \(\widehat{ECF}\) (2 góc t ư )
mà 2 góc này ở vị trí so le trong nên AB // CF.
c) Vì ΔAED = ΔCEF nên AD = FC (2 cạnh t ư)
mà AD = DB (suy từ gt) => DB = FC
Do AB // CF hay DB // CF nên \(\widehat{BDC}\) = \(\widehat{DCF}\) (so le trong)
Xét ΔBDC và ΔFCD có:
BD = FC ( cm trên)
\(\widehat{BDC}\) = \(\widehat{DCF}\) (cm trên)
CD chung
=> ΔBDC = ΔFCD (c.g.c)
d) Lại do ΔBDC = ΔFCD nên \(\widehat{BCD}\) = \(\widehat{FDC}\) (2 góc t ư); DF = BC ( 2 cạnh t ư)
mà 2 góc này ở vị trí so le trong nên DE // BC
mà DE = \(\frac{1}{2}\)EF => DE = \(\frac{1}{2}\)BC.
Chứng minh:
a. Xét hai tam giác DCE và DBF có :
DE= DF ( gt )
góc CDE = góc BDF ( đối đỉnh )
CD= BD ( gt )
=> tam giác DCE = tam giác DBF ( c.g.c)
b. Tam giác DCE = tam giác DBF ( theo a )
=> EC = BF
Mà : EC = AE ( vì E là trung điểm của AC)
=> AE= BF ( dpcm)
c. Tam giác DCE = tam giác DBF ( theo a )
=> góc CED = góc BFD
Mà hai góc ở vị trí so le trong => EC // BF
Ta có hình vẽ:
a/ Xét tam giác ABC và tam giác AED có:
BA = AE (GT)
góc BAC = góc DAE (đối đỉnh)
CA = AD (GT)
=> tam giác ABC = tam giác AED (c.g.c)
b/ Ta có: tam giác ABC = tam giác AED (câu a)
=> góc DEA = góc ABC (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> BC // DE (đpcm)
c/ Ta có: BC // DE (đã chứng minh trên)
=> góc DNA = góc AMC so le trong
=> đường MN qua A
hay NA trùng AM
hay N,A,M thẳng hàng