\(\Delta ABC\)có 3 đường trung trực của AB,AC,BC lần lượt cắt AB,AC,BC tại M,N,P. Chứn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

a) Tứ giác ANHM có 3 góc vuông : AMH ; MAN ; ANH nên là hình chữ nhật

b) Hình chữ nhật ANHM có AH cắt MN tại trung điểm mỗi đường nên OA =\(\frac{AH}{2};ON=\frac{MN}{2}\)mà AH = MN nên OA = ON

\(\Rightarrow\Delta OAN\)cân tại O (1)

Ta lại có :\(\Delta ABC,\Delta AHC\)lần lượt vuông tại A,H có\(\widehat{B}+\widehat{C}=\widehat{HAC}+\widehat{C}=90^0\Rightarrow\widehat{B}=\widehat{OAN}=\widehat{ONA}\)(do 1)

\(\widehat{ONA}+\widehat{ONC}=180^0\)(kề bù).Vậy tứ giác BCNM có\(\widehat{B}+\widehat{MNC}=180^0\Rightarrow\widehat{C}+\widehat{BMN}=180^0\)

c)\(\Delta ANM,\Delta ABC\)cùng vuông tại A có\(\widehat{B}=\widehat{MNA}\Rightarrow\Delta ANM~\Delta ABC\left(g-g\right)\Rightarrow\frac{AN}{AM}=\frac{AB}{AC}\)=> AM.AB = AN.AC

5 tháng 4 2017

d)\(\Delta ABC\)vuông tại A có I là trung điểm BC nên trung tuyến AI =\(\frac{BC}{2}\)mà BI =\(\frac{BC}{2}\)nên AI = BI

\(\Rightarrow\Delta ABI\)cân tại I =>\(\widehat{BAI}=\widehat{B}=\widehat{MNA}\)\(\Delta AMN\)vuông tại A có\(\widehat{AMN}+\widehat{MNA}=90^0\)

Gọi giao điểm AI và MN là P thì\(\Delta AMP\)có \(\widehat{MAP}+\widehat{AMP}=90^0\)nên\(\Delta AMP\)vuông tại P => AI _|_ MN

14 tháng 6 2018

a, Xét ∆ ABC có đg ttrực của AB và AC giao nhau tại O

➡️O là tâm đg tròn ngoại tiếp ∆ ABC 

➡️AO là đg ttrực của BC (đpcm)

b, Gọi giao điểm của AO là BC là H.

Xét ∆ ABC cân tại A

➡️AO là đg ttrực đồng thời là đg phân giác

➡️Góc BAO = góc CAO = góc BAC ÷ 2 = 120° ÷ 2 = 60°

Vì O là tâm đg tròn ngoại tiếp ∆ ABC (cmt)

➡️OA = OB = OC

Xét ∆ ABO cân tại O (OA = OB) có góc BAO = 60° 

➡️∆ ABO đều

➡️BH là đg cao đồng thời là ttuyến

➡️BH là đg ttuyến của AC

mà E là giao của ttrực AB và ttuyến AO

➡️E là trọng tâm ∆ ABO

C/m tương tự ta có F là trọng tâm ∆ ACO (đpcm)

c, Xét ∆ ABC cân tại A

Góc ABC = góc ACB = (180° - 120°) ÷ 2 = 30°

Gọi OM và ON lần lượt là đg ttrực của AB và AC

Vì AB = AC ➡️AM = BM = AN = CN

Xét ∆ vuông BEM và ∆ CFN có:

Góc M = góc N = 90°

BM = CN (cmt)

Góc ABC = góc ACB (cmt)

➡️∆ vuông BEM = ∆ vuông CFN (ch - gn)

➡️BE = CF ( 2 cạnh t/ư) (1)

     ME = NF (2 cạnh t/ư)

Xét ∆ vuông BEM có góc ABC = 30°

➡️Góc BEM = 90° - 30° = 60°

mà góc BEM đối đỉnh với góc OEH

➡️Góc BEM = góc OEH = 60°

Xét ∆ OBE có góc EBO = góc EOB = 60° ÷ 2 = 30°

➡️∆ OBE cân tại E

➡️BE = OE

Ta có: OE + ME = OM

           OF + NF = ON

mà OM = ON, ME = NF

➡️OE = OF

Xét ∆ OEF cân tại O (OE = OF) có góc OEH = 60°

➡️∆ OEF đều

➡️OE = EF

mà OE = BE (cmt)

➡️BE = EF (2)

Từ (1) và (2) ➡️BE = EF = CF (đpcm)

Hok tốt~

P/s : ôi mỏi tay quá k mk với~

12 tháng 5 2017

bài này làm được nhưng nhại đánh máy ra.... lên mạng mà search bạn ạ

12 tháng 5 2017

mình lên rồi nhưng ko có

1/ Cho \(\Delta ABC\) đường cao AH. Trên nửa mặt phẳng chứa điểm A bờ là BC lấy các điểm D và E sao cho BD\(\perp\)BA, BD = BA, CE\(\perp\)CA, CE = CA. CMR các đường thảng AH, CE, BD đồng quy.2/ Cho tam giác nhọn ABC, H là trực tâm, G là trọng tâm, O là điểm cách đều 3 đỉnh của \(\Delta ABC\). CMR H, G, O thẳng hàng; HG=2GO.3/ Cho tam giác nhọn ABC. H là trực tâm:CMR: a) HA+HB+HC<AB+AC           b)...
Đọc tiếp

1/ Cho \(\Delta ABC\) đường cao AH. Trên nửa mặt phẳng chứa điểm A bờ là BC lấy các điểm D và E sao cho BD\(\perp\)BA, BD = BA, CE\(\perp\)CA, CE = CA. CMR các đường thảng AH, CE, BD đồng quy.

2/ Cho tam giác nhọn ABC, H là trực tâm, G là trọng tâm, O là điểm cách đều 3 đỉnh của \(\Delta ABC\). CMR H, G, O thẳng hàng; HG=2GO.

3/ Cho tam giác nhọn ABC. H là trực tâm:

CMR: a) HA+HB+HC<AB+AC

           b) HA+HB+HC<\(\frac{2}{3}\)(AB+BC+CA)

4/ Cho \(\Delta ABC\) vuông tại A. Gọi I là giao điểm của các đường phân giác ABC. Vẽ \(ID\perp AB\) tại D. CMR AB+AC-BC=2ID

5/ Cho \(\Delta ABC\) vuông tại A. AH là đường cao. Gọi I,K,S lần lượt là giao điểm các đường phân giác của \(\Delta ABC\)\(\Delta ABH\)\(\Delta ACH\). Vẽ \(II'\perp BC\) tại I', \(KK'\perp BC\) tại K', \(SS'\perp BC\) tại S'. CMR: SS'+II'+KK'=HA

0

A B C D E F I 1 2

*Bài dài quá, mk tóm tắt cách làm rồi bạn diễn giải ra nha*

a) Để chứng minh \(\Delta ADB=\Delta ADC\), ta chứng minh theo trường hợp cạnh - góc - cạnh

- Ta thấy có AD là cạnh chung

- \(\widehat{A_1}=\widehat{A_2}\) do phân giác

- AB = AC do \(\Delta ABC\) cân

b) Để chứng minh \(\Delta AED=\Delta AFD\), ta chứng minh theo trường hợp cạnh huyền - góc nhọn của tam giác vuông

- Dễ dàng chứng minh 2 tam giác này vuông lần lượt tại E, F

- AD là cạnh chung

- \(\widehat{A_1}=\widehat{A_2}\)

c) Để chứng minh \(\Delta BDE=\Delta CDF\), ta chứng minh theo trường hợp cạnh huyền - góc nhọn của tam giác vuông

- Dễ thấy ED = DF do \(\Delta AED=\Delta AFD\)

- BD = DC

(do AD là phân giác của \(\Delta ABC\)\(\Delta ABC\) cân tại A nên AD cũng là trung tuyến. Suy ra D là trung điểm CD nên BD=DC)

d) Để chứng minh AD là trung trực BC, ta phải chứng minh D là trung điểm BC và AD vuông góc BC

- Đã có D là trung điểm BC do cmt

- AD vuông góc BC do AD là phân giác của \(\Delta ABC\)\(\Delta ABC\) cân tại A nên AD cũng là đường cao.

e) Để chứng minh \(I\in AD\) mà I là trung trực EF thì ta chứng minh AD là trung trực EF

Để chứng minh AD là trung trực EF, ta phải có AE = AF, ED = DF (cmt do \(\Delta AED=\Delta AFD\))

9 tháng 2 2018

Giúp mình nha ....đang cần gấp lắm luôn á!!!!

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau