Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C I E H M
Số tự thêm ha
a/ Xét tam giác ABC, áp dụng Định lí Pitago đảo:
\(AB^2+AC^2\)
\(=9^2+12^2=225=15^2=BC^2\)
=> Tam giác ABC vuông
b/ Xét tam giác ABCvuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)(định lí 4)
\(\frac{1}{AH^2}=\frac{1}{9^2}+\frac{1}{12^2}=\frac{25}{1296}\)
\(\Rightarrow AH^2=\frac{1296}{25}\Rightarrow AH=7,2\)(cm)
Xét tam giác ABC vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:
\(AB^2=BH\cdot BC\)(đinh lí 1)
\(9^2=BH\cdot15\)
\(\Rightarrow BH=5,4\)(cm)
c/ Xét tam giác ABH vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:
\(AH^2=AE\cdot AB\)(định lí 1) [1]
Xét tam giác AHC vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:
\(AH^2=AI\cdot IC\)(đinh lí 1) [2]
Từ [1], [2] \(\Rightarrow AE\cdot AB=AI\cdot AC\)(đpcm)
d/ Gọi M là đường trung tuyến tam giác ABC
\(\Rightarrow BM=MC=\frac{BC}{2}=AM\)
Xét tam giác ABC vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:
: \(AH^2=BH\cdot HC\)(định lí 2)
\(\Rightarrow\sqrt{BH\cdot HC}=\sqrt{AH^2}=AH\)
Mà \(AH\le AM\)( AH = AM với trường hợp AH trùng AM )
\(\Rightarrow\sqrt{HB\cdot HC}\le\frac{BC}{2}\)(đpcm)
p/s Hình hơi xấu nhé, thông cảm >:
Ahwi:
Bài d nếu thay số vào thì có được không bạn? do mik thấy các cạnh trên đều tìm được??
BÀI 1:
a)
· Trong ∆ ABC, có: AB2= BC.BH
Hay BC= =
· Xét ∆ ABC vuông tại A, có:
AB2= BH2+AH2
↔AH2= AB2 – BH2
↔AH= =4 (cm)
b)
· Ta có: HC=BC-BH
àHC= 8.3 - 3= 5.3 (cm)
· Trong ∆ AHC, có:
·
Bài 1:
A B C H E
a) Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)
\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)
Áp dụng Pytago ta có:
\(AH^2+BH^2=AB^2\)
\(\Rightarrow\)\(AH^2=AB^2-BH^2\)
\(\Rightarrow\)\(AH^2=5^2-3^2=16\)
\(\Rightarrow\)\(AH=4\)
b) \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)
Áp dụng hệ thức lượng ta có:
\(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)
\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)
\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)
\(\Rightarrow\)\(HE=\frac{16}{5}\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot5=3\cdot4=12\)
hay AH=2,4(cm)
b) Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{4}{5}\)
hay \(\widehat{B}\simeq53^0\)
\(\Leftrightarrow\widehat{C}=37^0\)
c) Xét ΔABC có AE là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{BE}{3}=\dfrac{CE}{4}=\dfrac{BE+CE}{3+4}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}BE=\dfrac{15}{7}\left(cm\right)\\CE=\dfrac{20}{7}\left(cm\right)\end{matrix}\right.\)
a,xét hai tam giác đòng dạng:ABH và ABC(g.g)
=>\(\dfrac{BH}{AB}\)=\(\dfrac{AB}{BC}\)=> đpcm
b,cm theo diện tích của tam giác vuông