Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phần c đơn giản lắm :) Vừa nghĩ ra tiếp :
Ta có :
- \(4.\left(S_{ABC}\right)^2=\left(2.S_{ABC}\right)^2\)
\(\Rightarrow\left(AB.AC\right)^2=\left(AH.BC\right)^2\)
\(\Rightarrow AB^2.AC^2=AH^2.BC^2\)
Mà \(BC^2=AB^2+AC^2\)( Pythagores )
\(\Rightarrow AB^2.AC^2=AH^2\left(AB^2+AC^2\right)\)
\(\Rightarrow\frac{1}{AH^2}=\frac{AB^2+BC^2}{AB^2.AC^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
Vậy...
Ngồi nháp rồi nghĩ ra phần a :) Sẽ cập nhật khi nghĩ được b , c
[ Tự vẽ hình ]
Áp dụng định lý Pythagores có :
- \(AB^2+AC^2=BC^2\)
- \(AH^2=AC^2-HC^2=AB^2-BH^2\)
\(\Rightarrow AH^2=\frac{AC^2-HC^2+AB^2-HB^2}{2}\)
\(=\frac{\left(AB^2+AC^2\right)-\left(HB^2+HC^2+2HB.HC\right)+2HB.HC}{2}\)
\(=\frac{BC^2-\left(HB+HC\right)^2+2HB.HC}{2}\)
\(=\frac{BC^2-BC^2+2HB.HC}{2}\)
\(=\frac{2HB.HC}{2}\)
\(=HB.HC\)
Vậy \(AH^2=HB.HC.\)

lớp 5 cũng có thể làm bài toán này
bạn suy nghĩ đi
dễ ợt à
tíc mình nha

Bài 1:
\(\text{Giả sử: }\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=k\)
\(\Rightarrow x=2k;y=4k;z=6k\)
Thay vào: x-y +z= 2k- 4k+ 6k= 8
= 4k= 8
=> k= \(\frac{8}{4}=2\)
=> x= 2. 2= 4
y= 4. 2= 8
z= 6.2 = 12
Vậy \(\begin{cases}x=4\\y=8\\z=12\end{cases}\)
Bài 2:
Giải:
Gọi số học sinh 4 khối 6, 7, 8, 9 là a, b, c, d ( a,b,c,d thuộc N* )
Ta có: \(\frac{a}{3}=\frac{b}{3,5}=\frac{c}{4,5}=\frac{d}{4}\) và a + b + c + d = 660
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{3,5}=\frac{c}{4,5}=\frac{d}{4}=\frac{a+b+c+d}{3+3,5+4,5+4}=\frac{660}{15}=44\)
+) \(\frac{a}{3}=44\Rightarrow a=132\)
+) \(\frac{b}{3,5}=44\Rightarrow b=154\)
+) \(\frac{c}{4,5}=44\Rightarrow c=198\)
+) \(\frac{d}{4}=44\Rightarrow d=176\)
Vậy khối 6 có 132 học sinh
khối 7 có 154 học sinh
khối 8 có 198 học sinh
khối 9 có 176 học sinh

gọi số học sinh mỗi lớp là a,b,c ( a,b,c < 118, c,b,c thuộc N* ) và a + b + c = 118
Nếu chuyển 1/6 số học sinh lớp 7A,2/7 số học sinh lớp 7B, 1/4 số học sinh lớp 7C thì số học sinh ba lớp bằng nhau hay :
\(\frac{5}{6}a=\frac{5}{7}b=\frac{3}{4}c\)
\(\Rightarrow\frac{5a}{6}=\frac{5b}{7}=\frac{3c}{4}\)
\(\Rightarrow\frac{5a}{6.15}=\frac{5b}{7.15}=\frac{3c}{4.15}\)
\(\Rightarrow\frac{a}{18}=\frac{b}{21}=\frac{c}{20}\)
Áp dụng tính chất của dãy tỉ số bằn nhau,ta có :
\(\frac{a}{18}=\frac{b}{21}=\frac{c}{20}=\frac{a+b+c}{18+21+20}=\frac{118}{59}=2\)
\(\Rightarrow a=36;b=42;c=40\)
Vậy ...

1/ Ta cần c/m \(3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)⋮6\)
Tức là \(3^{n+1}.10+2^{n+2}.3⋮6\) (1)
Ta có:
Với n = 0 \(3^{n+1}.10+2^{n+2}.3=114⋮6\Rightarrow\)mệnh đề đúng với n = 0 (1)
Giả sử điều đó đúng với n = k.Tức là \(3^{k+1}.10+2^{k+2}.3⋮6\) (2)
Ta sẽ c/m nó đúng với n = k + 1.
Thật vậy,ta cần c/m: \(3^{k+2}.10+2^{k+3}.3⋮6\)
\(\Leftrightarrow3^k.90+2^k.24⋮6\)
Điều này luôn đúng do \(90⋮6;24⋮6\rightarrow3^k.90⋮6;2^k.24⋮6\)
\(\Rightarrow3^k.90+2^k.24⋮6\) (3)
Từ (1);(2) và (3) ta được đpcm.
2.b)Gọi số học sinh của 3 lớp lần lượt là x,y,z > 0
Theo đề bài ra,ta có: \(\frac{2x}{3}=\frac{y}{1}=\frac{4z}{5}\) và \(\left(x+y\right)-z=57\)
Ta có: \(\frac{2x}{3}=\frac{y}{1}=\frac{4z}{5}\Leftrightarrow\frac{x}{\frac{3}{2}}=\frac{y}{1}=\frac{z}{\frac{5}{4}}\)
Áp dụng t/c dãy tỉ số "=" nhau,ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{1}=\frac{z}{\frac{5}{4}}=\frac{\left(x+y\right)-z}{\left(\frac{3}{2}+1\right)-\frac{5}{4}}=\frac{57}{\frac{5}{4}}=\frac{228}{5}\)
Đến đây bạn tự suy ra,nếu ra số hữu tỉ thì làm tròn nha!
Bài này không chứng minh được theo kiến thức lớp 6, 7 và tiểu học. Phải áp dụng tam giác đồng dạng của lớp 8.
Hoàng Tuấn Đăng A hai à, thầy em bảo làm theo cách tiểu học, cách tính S tam giác + lớp 6,7 đó a ạ